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2 Problem Statement
Develop efficient algorithms to solve the general optimization problem (OP),

min
x∈X

f (x) subject to g(x) = 0, Tx ∈ C .

Notation, problem data and assumptions:

f : X → R and g : X → Y are continuously differentiable.

f and ‖g(·)‖Y are weakly lower semicontinuous.

We let C = C1 ∩ · · · ∩ Cm 6= ∅ with Ci ⊆ Z nonempty, closed
and convex sets.

X , Y are real Banach spaces and Z is a real Hilbert space.

T ∈ L(X ,Z ) and T ∗ is injective.
Set C as the intersection of two closed half-spaces,
C1 and C2, and the closed ball C3.

Additionally: The projection of x ∈ X onto C is PC (x), and the distance from x to C is dC (x), with

dC (x) := min
y∈C

‖x − y‖X = ‖x − PC (x)‖X .

The sets {C1, . . . ,Cm} are boundedly regular, i.e., for every bounded sequence {xk} ⊂ X

max
i=1,...,m

dCi
(Txk )→ 0 =⇒ dC (Txk )→ 0.

Denis Ridzal ALESQP



3 Motivation
PDE-constrained optimization (optimal control):

min
u,z

f (u, z) subject to g(u, z) = 0, T1u ∈ C1, T2z ∈ C2.

Given a control z , the PDE g(u, z) = 0 is expensive to solve for the state u = u(z).

Keep PDE as constraint and solve it gradually using, e.g., trust-region SQP (no nonlinear solves).

Linear (KKT-like) systems in SQP take advantage of iterative solvers and good preconditioners.

Use matrix-free SQP that efficiently handles inexact linear system solves; also mesh adaptivity.†,††

Catch: SQP with inexact linear system solves cannot directly handle general inequality constraints.

Penalize Tx ∈ C explicitly using augmented Lagrangian.

Control and state constraint multipliers typically have different regularity properties, e.g., L2 for control
multipliers and measures for state multipliers, resulting in vastly different scales.

Use separate penalties and multiplier estimates for control and state constraints.

Many nonlinear programming methods exhibit mesh dependence, i.e., iterations grow with problem size.

Prove convergence in infinite-dimensional Banach/Hilbert spaces.
†Heinkenschloss, Ridzal (2014), A matrix-free trust-region SQP method for equality constrained optimization, SIOPT.
††Ziems, Ulbrich (2011), Adaptive multilevel inexact SQP methods for PDE-constrained optimization, SIOPT.
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4 Example 1 State and control constrained semilinear PDE-constrained optimization

min
u∈H1

0 (Ω), z∈L2(Ω)

{
1

2
‖u − ud‖2

L2(Ω) +
α

2
‖z‖2

L2(Ω)

}
subject to

−∆u + u3 = z in Ω

u = 0 on ∂Ω

ua ≤ u a.e. in Ω

za ≤ z ≤ zb a.e. in Ω,

with

ud = −1, α = 10−3, za = −10, zb = 10,

ua(x) = − 2
3

+ 1
2

min
{
x1 + x2,

min{1 + x1 − x2,min{1− x1 + x2, 2− x1 − x2}}
}
.

ua multiplier za multiplier zb multiplier

Börgens, Kanzow, Steck (2019), Local and global
analysis of multiplier methods for constrained
optimization in Banach spaces, SICON.
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5 Example 2 Rényi entropy maximization with constraints

Applicable to other ∞-dim. problems, nonlinear T :

max
ρ∈Lp(Ω)

1

1− p
log

(∫
Ω

ρ(x)p dx

)
subject to ρ ≥ 0 a.e.∫

Ω

ρ(x) dx = 1∫
Ω

ρ(x)x dx = µ

det

(∫
Ω

ρ(x)(x − µ)(x − µ)> dx

)
≤ σ,

where µ = (0.45, 0.45) and

σ =
1

2
det

(∫
Ω

(x − µ)(x − µ)> dx

)
≈ 0.00368.

Objective is p-order Rényi entropy, with p = 2.5. Van Erven, Harremos (2014), Rényi divergence and
Kullback-Leibler divergence, IEEE Trans. Inf. Theory.
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6 Derivation of the Augmented Lagrangian
Exact penalty: IC (y) = 0 if y ∈ C and IC (y) =∞ if y 6∈ C . (OP) is equivalent to:

min
x∈X
{f (x) + IC (Tx)} subject to g(x) = 0.

Specifically, IC (Tx) = IC1 (Tx) + . . .+ ICm(Tx) . It is relaxed [Rockafellar, 1976] using

Ψi (x , λ, r) := sup
µ∈Z
{(µ,Tx)Z − I ∗Ci

(µ)− 1
2r ‖µ− λ‖

2
Z},

where r > 0, i = 1, . . . ,m, and I ∗Ci
(µ) := supz∈Ci

(µ, z)Z is the Fenchel conjugate of ICi .

Maximization problem is strongly concave and has the unique solution

Λi (x , λ, r) := r((r−1λ+ Tx)− PCi (r
−1λ+ Tx)).

This is the usual augmented Lagrangian multiplier update.

Maintain separate multiplier estimates λi and penalty parameters ri for each constraint
Tx ∈ Ci to account for differing constraint scales. Our augmented Lagrangian is

L(x , λ1, . . . , λm, r1, . . . , rm) := f (x) +
m∑
i=1

1
2ri
‖Λi (x , λi , ri )‖2

Z − 1
2ri
‖λi‖2

Z .
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7 Examples of C and Multiplier Updates

Norm constraints: Let ρ > 0 and z0 ∈ Z . We consider the set

C = {z ∈ Z | ‖z − z0‖Z ≤ ρ} = z0 + BZ
ρ .

In this case,

Λ(x , λ, r) =
(

1−min
{

1, rρ
‖λ+r(Tx−z0)‖Z

})
(λ+ r(Tx − z0)).

Conical constraints: Let K ⊂ Z be pointed, closed, convex cone. Consider,

C = {z ∈ Z | z − ` ∈ K} = `+ K ,

then
Λ(x , λ, r) = −(λ+ r(Tx − `))−.

Finitely many linear constraints: Let {a1, . . . , an} ⊂ X ∗ \ {0} be linearly independent,
{b1, . . . , bn} ⊂ Rn and C = {z ∈ Rn | zi ≥ bi}. Moreover, (Tx)i = 〈ai , x〉X∗,X for
i = 1, . . . , n. Then

Λ(x , λ, r)i = min{0, λi + r(〈ai , x〉X∗,X − bi ))}, i = 1, . . . ,m.
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8 Properties of the Augmented Lagrangian

For fixed λi ∈ Z and ri > 0, i = 1, . . . ,m, L(·, λ1, . . . , λm, r1, . . . , rm) is

(i) weakly lower semicontinuous if f is;

(ii) convex if f is; and

(iii) continuously Fréchet differentiable if f is.

Moreover, in case (iii), the derivative of L(·, λ1, . . . , λm, r1, . . . , rm) is given by

Lx(x , λ1, . . . , λm, r1, . . . , rm) = f ′(x) +
m∑
i=1

T ∗Λi (x , λi , ri ),

and if f ′ is Lipschitz continuous, f ∈ C 1,1, so is Lx(·, λ1, . . . , λm, r1, . . . , rm), L ∈ C 1,1.

Subproblem (SUB): Find approximate stationary point of

min
x∈X

L(x , λ1, . . . , λm, r1, . . . , rm) subject to g(x) = 0.

The solvers of Heinkenschloss, Ridzal (2014) and Ziems, Ulbrich (2011) almost apply
in Hilbert space; they technically require L ∈ C 2, and we have L ∈ C 1,1.
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9 ALESQP Iteration k of Augmented Lagrangian with Equality-constrained SQP

1: Use ESQP to solve (SUB) and compute (x(k), ζ(k)) ∈ X × Y ∗ that satisfies

‖g(x(k))‖Y ≤ δ(k) and ‖f ′(x(k)) +
∑

i T
∗Λi (x

(k), λ
(k)
i , r

(k)
i ) + g ′(x(k))∗ζ(k)‖X∗ ≤ ε(k).

2: for i = 1, . . . ,m do

3: if ‖Λi (x
(k), λ

(k)
i , r

(k)
i )− λ(k)

i ‖Z > r
(k)
i τ

(k)
i then // penalty parameter updates

4: r
(k+1)
i = ηi r

(k)
i

5: θ
(k+1)
i = min{1/r (k+1)

i , θi}
6: τ

(k+1)
i = τ

(0)
i (θ

(k+1)
i )αi // geometric decay

7: else
8: r

(k+1)
i = r

(k)
i

9: θ
(k+1)
i = min{1/r (k+1)

i , θi}
10: τ

(k+1)
i = τ

(k)
i (θ

(k+1)
i )βi // exponential decay

11: end if
12: if ‖Λi (x

(k), λ
(k)
i , r

(k)
i )‖Z ≤ νi (r

(k+1)
i )γi then // multiplier updates

13: λ
(k+1)
i = Λi (x

(k), λ
(k)
i , r

(k)
i )

14: else
15: λ

(k+1)
i = λ

(k)
i

16: end if
17: end for // single update if k > 1000
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10 Comparisons with Existing Approaches
ALESQP incorporates multiple penalty functions to handle varying constraint scalings.

ALESQP is related to LANCELOT† with two additional differences:

ALESQP can handle both finite and infinite dimensional spaces.
ALESQP keeps the equality constraints explicit and penalizes the constraints Tx ∈ C ;
this is related to the finite-dimensional SECO†† subproblem formulation.

Existing infinite-dimensional augmented Lagrangians: Börgens, Kanzow, Steck (2019).
There are three fundamental differences:

Different subproblems: ALESQP treats the equality constraint (e.g., PDE) explicitly versus
implicitly through an exact nonlinear solve. Subproblems are only equality-constrained.
Inexact solves: ALESQP enables large-scale iterative linear solves and mesh adaptivity.
Convergence analysis: ALESQP theory assumptions are weaker and the results are stronger.

In a nutshell, ALESQP is an infinite-dimensional extension of the SECO formulation with
the inner workings of LANCELOT + multiple penalty functions + inexact linear solves.

†Conn, Gould, Toint (1991), A globally convergent augmented Lagrangian algorithm for optimization with
general constraints and simple bounds, SINUM.
††Birgin, Bueno, Mart́ınez (2016), Sequential equality-constrained optimization for NLP, Comp. Optim. Appl.
Denis Ridzal ALESQP



11 Convergence Theory Dual convergence

Let {λ(k)
i } be an infinite sequence of multipliers for the i th constraint generated by

ALESQP, and let γi < 1/2. If r
(k)
i →∞, then

lim
k→∞

1

(r
(k)
i )α

‖λ(k)
i ‖Z = 0 ∀α > γi .

Moreover, for the corresponding sequence of iterates {x (k)}, the following are equivalent:

(i) lim inf
k→∞

dCi (Tx
(k)) = 0

(ii) lim inf
k→∞

1

r
(k)
i

‖Λi (x
(k), λ

(k)
i , r

(k)
i )− λ(k)

i ‖Z = 0

(iii) lim inf
k→∞

1

r
(k)
i

‖Λi (x
(k), λ

(k)
i , r

(k)
i )‖Z = 0.

Moreover,

if the Lagrange multipliers λi are updated finitely many times, or
if the penalty parameters rj are updated finitely many times for all j = 1, . . . ,m, then

the sequence of multipliers {λ(k)
i } converges strongly to some λ̄i ∈ Z .
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12 Convergence Theory Finite termination and asymptotic stationarity

Stopping Conditions: Let δ∗ > 0, ε∗ > 0 and τ∗ > 0. ALESQP exits if

‖g(x (k))‖Y ≤ δ∗
‖L′(x (k)) + g ′(x (k))∗ζ(k)‖X∗ ≤ ε∗

max
i=1,...,m

dCi (Tx
(k)) ≤ τ∗.

ALESQP either exits after a finite number of iterations; or
produces a sequence that satisfies the asymptotic stationarity conditions:

‖g(x (k))‖Y → 0

and
lim sup
k→∞

〈−(f ′(x (k)) + g ′(x (k))∗ζ(k)), y − x (k)〉X∗,X ≤ 0 ∀ y ∈ T−1(C ).
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13 Convergence Theory Feasible points, stationary points and extensions

Strong accumulation points of {x (k)} are stationary under mild assumptions.

Finite Dimensions: ALESQP converges to a stationary point.

Infinite Dimensions: In general, weak accumulation points x̄ of {x (k)} satisfy:
∃ t̄i > 0 with t̄1 + . . .+ t̄m = 1 such that

Tx̄ ∈ t̄1C1 + . . .+ t̄mCm,

but need not be feasible!

Weak accumulation points of {x (k)} are feasible for many practical situations:
m = 1, or
T completely continuous, or
x (kj ) converges strongly to x̄ , or
∃X0 that is compactly embedded in X with {x (kj )} ⊂ X0 and x (kj ) ⇀ x̄ in X0.

Holds for finite-dimensional X and many PDECO problems with control/state constraints.

Require strong assumptions on g to show that weak accumulation points are stationary.

Can extend theory to nonlinear T to handle, e.g., complementarity constraints.
Denis Ridzal ALESQP



14 Subproblem Solver: Trust-region SQP
Start with the equality-constrained optimization problem:

min
x∈X

L(x) subject to g(x) = 0

where L : X → R and g : X → Y , for some Hilbert spaces X and Y , and where
L is Lipschitz continuously and g is twice continuously Fréchet differentiable.

Define SQP Lagrangian functional L : X × Y ∗ → R:

L (x , ζ) = L(x) + 〈ζ, g(x)〉Y ∗,Y

At j th SQP iteration solve nonconvex quadratic trust-region subproblem:

min
s∈X

1

2
〈∇xxL (xj , ζj)s, s〉X∗,X + 〈∇xL (xj , ζj), s〉X∗,X + L (xj , ζj)

s.t. g ′(xj)s + g(xj) = 0 , ‖s‖X ≤ ∆j

Extended the Byrd-Omojokun composite-step approach to support inexact linear solvers.
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15 Composite-step Method for Trust-region Subproblem

Trust-region step: sj = nj + tj

Quasi-normal step nj :

reduces linear infeasibility

min
n∈X

‖g ′(xj )n + g(xj )‖2
Y

s.t. ‖n‖X ≤ ζ∆j

Tangential step tj :

improves optimality while staying in the null
space of the linearized constraints

min
t∈X

1

2
〈∇xxL (xj , ζj )(t + nj ), t + nj 〉X∗,X + 〈∇xL (xj , ζj ), t + nj 〉X∗,X + L (xj , ζj )

s.t. g ′(xj )t = 0 , ‖t + nj‖X ≤ ∆j

Omojokun (1989), Byrd, Hribar, Nocedal (1997), Dennis, El-Alem, Maciel (1997)

ζ∆j ∆j

tj

g′(xj )t = 0

g′(xj )s + g(xj ) = 0

nj

Denis Ridzal ALESQP



16 Matrix-free Trust-region SQP Algorithm

1 Compute quasi-normal step nj using
Powell dogleg, where for the Newton
step we solve an augmented system
inexactly.

2 Solve tangential subproblem for t̃j via
projected Steihaug-Toint CG, where
the projections are computed by solving
augmented systems inexactly.

3 Restore linearized feasibility, for
tangential step tj , via another
inexact projection.

4 Update Lagrange multipliers ζj+1 by
solving an augmented system inexactly.

5 Evaluate progress.

Heinkenschloss, Ridzal (2014)

Augmented System(
IX ,X∗ g ′(xj)

∗

g ′(xj) 0

)(
y1

y2

)
=

(
b1

b2

)
+

(
e1

e2

)
The size of (e1 e2) is governed by the progress of
the optimization algorithm:

‖e1‖X∗ + ‖e2‖Y ≤ T
(
‖b1‖X∗ , ‖b2‖Y , ‖y 1‖X ,∆j

)
In optimal control, augmented systems are:

(
IX ,X∗ g ′∗

g ′ 0

)
→

 IXu ,X∗u g∗u
IXz ,X∗z g∗z

gu gz 0


where u are the states and z the controls.
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17 Projected CG Preconditioner

Motivated by a comment on the “perfect preconditioner” for the projected CG method for
optimization, from Gould, Hribar, Nocedal (2002).†

Idea: Replace IX ,X∗ with Augmented Lagrangian derivatives:(
B(xj) + T ∗

(∑m
i=1 r

(k)
i

(
IZ ,Z∗ − Dij

))
T g ′(xj)

∗

g ′(xj) 0

)(
y1

y2

)
=

(
b1

0

)
+

(
e1

e2

)
,

where B(xj) ∈ L(X ,X ∗) is a nonnegative operator approximating f ′′(xj) and Dij denotes

the Newton derivative, see Chen, Nashed, Qi (2000)††, of PCi ((r
(k)
i )−1λ

(k)
i + Txj).

This choice can accelerate projected CG significantly.

At the same time, this system is more difficult to solve than a corresponding augmented
system, and challenging to integrate into projected CG when using iterative linear solvers.

†Gould, Hribar, Nocedal (2002), On the solution of equality constrained quadratic programs, SISC.

††Chen, Nashed, Qi (2000), Smoothing/semismooth methods for nondifferentiable operator equations, SINUM.

Denis Ridzal ALESQP



18 ALESQP Components

Note: Each box is an iterative process!
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19 Numerical experiments

Consider max entropy and semilinear PDECO problem.

Each constraint has its own starting penalty parameter.

Discretize infinite-dimensional objects using triangular
finite elements on regular grids.

Use diagonal Riesz maps in every ALESQP component.

Consider direct (exact) and iterative (inexact) solves.

Iterative augmented system solves:

We use MINRES with constant SPD preconditioners.

Unpreconditioned for the max entropy problem.

Schur complement preconditioner† for semilinear
problem. Linearized forward and adjoint systems are
“solved” using a few V-cycles of algebraic multigrid.

Schur Complement IX∗u ,Xu 0
IX∗z ,Xz 0

0 0 g−∗u IXu ,X∗u g−1
u



†Rees, Dollar, Wathen (2010), Optimal solvers for PDE-constrained optimization, SISC.
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20 Rényi Entropy Maximization with Constraints

max
ρ∈Lp(Ω)

−2

3
log

(∫
Ω

ρ(x)2.5 dx

)
subject to ρ ≥ 0 a.e.∫

Ω

ρ(x) dx = 1∫
Ω

ρ(x)x dx = µ

det

(∫
Ω

ρ(x)(x − µ)(x − µ)> dx

)
≤ σ,

where µ = (0.45, 0.45) and

σ =
1

2
det

(∫
Ω

(x − µ)(x − µ)> dx

)
≈ 0.00368.

Up to 263,169 optimization variables, 3 equality constraints and 263,170 inequality constraints.
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21 Maximum Rényi Entropy Direct, i.e., exact linear solves

Mesh AL SQP CG normg grad-lag feas

64x64 11 56 249 1.11e-16 1.77e-08 1.42e-08

128x128 11 54 242 1.36e-16 3.58e-08 2.09e-07

256x256 12 67 342 3.55e-16 2.11e-08 2.27e-08

512x512 12 65 312 8.85e-16 1.15e-08 7.46e-09

ALESQP performance for varying discretization (Mesh).

AL is the total number of augmented Lagrangian iterations.

SQP is the total number of SQP iterations.

CG is the total number of conjugate gradient iterations.

normg is the equality constraint violation ‖g(x (k))‖Y .

grad-lag is the gradient norm for subproblem Lagrangian,
‖L′k(x (k)) + g ′(x (k))∗ζ(k)‖X∗ .

feas is the constraint violation maxi dCi (Tx
(k)).

We observe that the AL, SQP, and CG iterations are nearly mesh independent.
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22 Maximum Rényi Entropy Iterative, i.e., inexact linear solves

Mesh AL SQP CG normg grad-lag feas avg.aug

64x64 11 57 261 2.85e-14 7.71e-08 1.49e-07 7.3

128x128 13 52 249 3.72e-16 2.77e-08 2.92e-09 7.7

256x256 11 45 177 3.60e-16 2.88e-08 9.72e-09 7.9

512x512 13 55 248 1.77e-15 2.94e-08 2.75e-08 8.2

avg.aug are the average numbers of MINRES iterations per call.

Again, the AL, SQP, and CG iterations are nearly mesh independent.

avg.aug are nearly mesh independent.

avg.aug are very small without preconditioning.

feas is as small as 2.92e-09.

Nominal linear system solver tolerances ranged from 1e-4 to 1e-1.
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23 Maximum Rényi Entropy Constraint feasibility with inexact solves

tol AL SQP CG normg grad-lag feas avg.aug

1e-6 13 52 249 3.72e-16 2.77e-08 2.92e-09 7.7

1e-8 16 55 274 2.99e-16 3.15e-10 5.15e-11 8.0

1e-10 20 59 305 2.22e-16 3.90e-12 3.47e-13 8.4

1e-12 26 64 345 1.67e-16 2.38e-14 3.47e-15 9.1

Fix the mesh resolution to 128x128.

Vary augmented Lagrangian nominal tolerance tol.

SQP iterations increase by 20% and CG iterations by 40% to add 6 digits of accuracy!

avg.aug are tolerance independent.

Smallest feas is 3.47e-15.

Nominal linear system solver tolerances ranged from 1e-4 to 1e-1.
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24 Optimization of Semilinear PDE with Constraints

min
u∈H1

0 (Ω), z∈L2(Ω)

{
1

2
‖u − ud‖2

L2(Ω) +
α

2
‖z‖2

L2(Ω)

}
subject to

−∆u + u3 = z in Ω

u = 0 on ∂Ω

ua ≤ u a.e. in Ω

za ≤ z ≤ zb a.e. in Ω,

with

ud = −1, α = 10−3, za = −10, zb = 10,

ua(x) = − 2
3

+ 1
2

min
{
x1 + x2,

min{1 + x1 − x2,min{1− x1 + x2, 2− x1 − x2}}
}
. ua multiplier za multiplier zb multiplier

Up to 2,000,600 optimization variables, 970,299 equality constraints and 3,030,901 inequality constraints.

Denis Ridzal ALESQP



25 Optimization of Semilinear PDE Direct, i.e., exact linear solves

Control State Control + State

Mesh AL SQP CG AL SQP CG AL SQP CG

64x64 11 21 55 15 29 73 18 40 95

128x128 11 21 57 17 37 97 18 45 110

256x256 15 24 65 18 39 105 20 47 119

512x512 15 26 68 20 44 122 22 50 131

ALESQP performance for varying 2D mesh (Mesh).

Control: only control constraints (use zb = −1);
State: only state constraints;
Control + State: both control and state constraints.

AL is the total number of augmented Lagrangian iterations.

SQP is the total number of SQP iterations.

CG is the total number of conjugate gradient iterations.

We observe that the AL, SQP, and CG iterations are nearly mesh independent.
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26 Optimization of Semilinear PDE Effect of multiple penalties

64× 64 mesh

2 4 6 8 10 12 14 16 18
10

-4

10
-2

10
0

10
2

10
4

10
6

Penalty parameters

State

Control Lower

Control Upper

256× 256 mesh

2 4 6 8 10 12 14 16 18 20
10

-4

10
-2

10
0

10
2

10
4

10
6

10
8

Penalty parameters

State

Control Lower

Control Upper

State-constraint
penalties increase
significantly.

Control-constraint
penalties do not
increase much.

Underlines the need
for multiple penalties!

Very mild mesh
dependence in the
state-constraint penalty
parameter sequence.
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27 Optimization of Semilinear PDE Iterative, i.e., inexact linear solves

Mesh AL SQP CG normg grad-lag feas avg.aug avg.augCG

24x24x24 32 38 74 3.21e-13 1.39e-10 5.70e-07 6.5 16.1

40x40x40 32 48 98 1.89e-10 2.97e-08 4.71e-07 7.3 30.8

64x64x64 29 50 128 1.04e-10 5.11e-08 6.05e-08 9.3 44.4

100x100x100 31 55 125 1.43e-10 8.58e-08 3.47e-07 11.7 54.4

3D version of the Control + State problem with hexahedral mesh and ua = − 1
2 .

avg.augCG are the average numbers of MINRES iterations per call in CG.
Recall: In CG we change the augmented system to account for AL penalty terms.

avg.aug are the average numbers of MINRES iterations per call elsewhere.

Again, the AL, SQP, and CG iterations are nearly mesh independent.

avg.aug and avg.augCG are somewhat mesh dependent.

feas is as small as 6.05e-08.

Nominal linear system solver tolerances ranged from 1e-6 to 1e-2.
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28 Optimization of Semilinear PDE Constraint feasibility with inexact solves

tol AL SQP CG normg grad-lag feas avg.aug avg.augCG

1e-6 32 48 98 1.89e-10 2.97e-08 4.71e-07 7.3 30.8

1e-8 49 55 112 3.21e-13 8.15e-11 1.20e-09 7.6 46.4

1e-10 63 61 124 1.82e-15 3.26e-13 5.30e-11 7.9 87.4

1e-12 80 66 134 1.82e-15 8.40e-14 2.76e-13 8.3 103.8

Fix the mesh resolution to 40x40x40.

Vary augmented Lagrangian nominal tolerance tol.

SQP and CG iterations increase by 35% to add 6 digits of accuracy!

Very mild increase in avg.aug and moderate increase in avg.augCG.

Smallest feas is 2.76e-13.

Nominal linear system solver tolerances ranged from 1e-6 to 1e-2.
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29 Summary

ALESQP is well suited for infinite-dimensional optimization with general constraints.

Augmented Lagrangian that penalizes inequalities, with equality-constrained subproblems.

Subproblem solver: Matrix-free trust-region SQP method with iterative linear solvers.

ALESQP uses a constraint decomposition with multiple penalties.

In optimal control, ALESQP provides a unified framework to efficiently handle general
constraints on both the state variables and the control variables.

Exhibits fast convergence and remarkable accuracy, even with inexact linear solves.

ALESQP uses the inner SQP loop economically!

Two papers:

ALESQP: Submitted.
Banach-space SQP, specialized for use with ALESQP: In progress.
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