

ALESQP: An Augmented Lagrangian Equality-constrained SQP Method for Optimization with General Constraints

Harbir Antil, Drew Kouri and Denis Ridzal

Sayas Numerics Seminar

UMD, UMBC, GMU, UD

November 3, 2020

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandla, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security.

Administration under contract DE-NA0003525

SAND2020-11366 C

2 Problem Statement

Develop efficient algorithms to solve the general optimization problem (OP),

 $\min_{x\in X} f(x) \qquad \text{subject to} \qquad g(x) = 0, \quad Tx\in C.$

Notation, problem data and assumptions:

- $f: X \to \mathbb{R}$ and $g: X \to Y$ are continuously differentiable.
- f and $||g(\cdot)||_Y$ are weakly lower semicontinuous.
- We let $C = C_1 \cap \cdots \cap C_m \neq \emptyset$ with $C_i \subseteq Z$ nonempty, closed and convex sets.
- X, Y are real Banach spaces and Z is a real Hilbert space.
- $T \in \mathcal{L}(X, Z)$ and T^* is injective.

Set C as the intersection of two closed half-spaces, C_1 and $C_2,$ and the closed ball $C_3.$

Additionally: The projection of $x \in X$ onto C is $\mathbf{P}_C(x)$, and the distance from x to C is $d_C(x)$, with $d_C(x) := \min_{y \in C} ||x - y||_X = ||x - \mathbf{P}_C(x)||_X.$

The sets $\{C_1, \ldots, C_m\}$ are boundedly regular, i.e., for every bounded sequence $\{x_k\} \subset X$ $\max_{i=1,\ldots,m} d_{C_i}(Tx_k) \to 0 \implies d_C(Tx_k) \to 0.$

3 Motivation

PDE-constrained optimization (optimal control):

 $\min_{u,z} f(u,z)$ subject to g(u,z) = 0, $T_1 u \in C_1$, $T_2 z \in C_2$.

- Given a control z, the PDE g(u, z) = 0 is expensive to solve for the state u = u(z).
 Keep PDE as constraint and solve it gradually using, e.g., trust-region SQP (no nonlinear solves).
- Linear (KKT-like) systems in SQP take advantage of iterative solvers and good preconditioners.
 Use matrix-free SQP that efficiently handles inexact linear system solves; also mesh adaptivity.^{†,††}
- Catch: SQP with inexact linear system solves cannot directly handle general inequality constraints. Penalize $Tx \in C$ explicitly using augmented Lagrangian.
- Control and state constraint multipliers typically have different regularity properties, e.g., L² for control multipliers and measures for state multipliers, resulting in vastly different scales.
 Use separate penalties and multiplier estimates for control and state constraints.
- Many nonlinear programming methods exhibit mesh dependence, i.e., iterations grow with problem size. **Prove convergence in infinite-dimensional Banach/Hilbert spaces.**

[†]**Heinkenschloss, Ridzal (2014)**, *A matrix-free trust-region SQP method for equality constrained optimization*, SIOPT. ^{††}**Ziems, Ulbrich (2011)**, *Adaptive multilevel inexact SQP methods for PDE-constrained optimization*, SIOPT. Denis Ridzal ALESOP

4 Example 1

State and control constrained semilinear PDE-constrained optimization

$$\min_{\substack{u \in H_0^1(\Omega), z \in L^2(\Omega)}} \left\{ \frac{1}{2} \|u - u_d\|_{L^2(\Omega)}^2 + \frac{\alpha}{2} \|z\|_{L^2(\Omega)}^2 \right\}$$

subject to
$$-\Delta u + u^3 = z \quad \text{in } \Omega$$
$$u = 0 \quad \text{on } \partial\Omega$$

$$u_a \leq u$$
 a.e. in Ω
 $z_a \leq z \leq z_b$ a.e. in Ω ,

with

$$u_d = -1, \quad \alpha = 10^{-3}, \quad z_a = -10, \quad z_b = 10,$$

$$u_a(x) = -\frac{2}{3} + \frac{1}{2} \min \left\{ x_1 + x_2, \min \{ 1 + x_1 - x_2, \min \{ 1 - x_1 + x_2, 2 - x_1 - x_2 \} \} \right\}.$$

Börgens, Kanzow, Steck (2019), Local and global analysis of multiplier methods for constrained optimization in Banach spaces, SICON.

5 Example 2 Rényi entropy max

Rényi entropy maximization with constraints

Applicable to other ∞ -dim. problems, nonlinear *T*:

$$\begin{split} \max_{\rho \in L^{p}(\Omega)} \ \frac{1}{1-\rho} \log \left(\int_{\Omega} \rho(x)^{\rho} \, \mathrm{d}x \right) \\ \text{subject to} \quad \rho \geq 0 \text{ a.e.} \\ \int_{\Omega} \rho(x) \, \mathrm{d}x = 1 \\ \int_{\Omega} \rho(x) x \, \mathrm{d}x = \mu \\ \mathrm{det} \left(\int_{\Omega} \rho(x) (x-\mu) (x-\mu)^{\top} \, \mathrm{d}x \right) \leq \sigma, \end{split}$$

where $\mu = (0.45, 0.45)$ and

$$\sigma = \frac{1}{2} \det \left(\int_{\Omega} (x - \mu) (x - \mu)^{\top} \, \mathrm{d}x \right) \approx 0.00368.$$

Objective is *p*-order Rényi entropy, with p = 2.5.

Van Erven, Harremos (2014), Rényi divergence and Kullback-Leibler divergence, IEEE Trans. Inf. Theory.

Derivation of the Augmented Lagrangian

- Exact penalty: I_C(y) = 0 if y ∈ C and I_C(y) = ∞ if y ∉ C. (OP) is equivalent to: min {f(x) + I_C(Tx)} subject to g(x) = 0.
- Specifically, $I_C(Tx) = I_{C_1}(Tx) + \ldots + I_{C_m}(Tx)$. It is relaxed [Rockafellar, 1976] using

$$\Psi_i(x,\lambda,r) := \sup_{\mu \in Z} \{ (\mu, Tx)_Z - I_{C_i}^*(\mu) - \frac{1}{2r} \|\mu - \lambda\|_Z^2 \},\$$

where r > 0, i = 1, ..., m, and $I^*_{C_i}(\mu) := \sup_{z \in C_i} (\mu, z)_Z$ is the Fenchel conjugate of I_{C_i} .

• Maximization problem is strongly concave and has the unique solution $\Lambda_i(x, \lambda, r) := r((r^{-1}\lambda + Tx) - \mathbf{P}_{C_i}(r^{-1}\lambda + Tx)).$

This is the usual augmented Lagrangian multiplier update.

• Maintain separate multiplier estimates λ_i and penalty parameters r_i for each constraint $Tx \in C_i$ to account for differing constraint scales. Our augmented Lagrangian is

$$L(x, \lambda_1, ..., \lambda_m, r_1, ..., r_m) := f(x) + \sum_{i=1}^m \frac{1}{2r_i} \|\Lambda_i(x, \lambda_i, r_i)\|_Z^2 - \frac{1}{2r_i} \|\lambda_i\|_Z^2.$$

ALESOP

Denis Ridzal

6

Examples of *C* and Multiplier Updates

• Norm constraints: Let $\rho > 0$ and $z_0 \in Z$. We consider the set

$$C = \{z \in Z \mid ||z - z_0||_Z \le \rho\} = z_0 + B_{\rho}^Z.$$

In this case,

$$\Lambda(x,\lambda,r) = \left(1 - \min\left\{1, \frac{r\rho}{\|\lambda + r(Tx - z_0)\|_Z}\right\}\right) (\lambda + r(Tx - z_0)).$$

• Conical constraints: Let $K \subset Z$ be pointed, closed, convex cone. Consider,

$$C = \{z \in Z \mid z - \ell \in K\} = \ell + K,$$

then

$$\Lambda(x,\lambda,r) = -(\lambda + r(Tx - \ell))_{-1}$$

• Finitely many linear constraints: Let $\{a_1, \ldots, a_n\} \subset X^* \setminus \{0\}$ be linearly independent, $\{b_1, \ldots, b_n\} \subset \mathbb{R}^n$ and $C = \{z \in \mathbb{R}^n \mid z_i \ge b_i\}$. Moreover, $(Tx)_i = \langle a_i, x \rangle_{X^*, X}$ for $i = 1, \ldots, n$. Then

$$\Lambda(x,\lambda,r)_i = \min\{0,\lambda_i + r(\langle a_i,x\rangle_{X^*,X} - b_i))\}, \quad i = 1,\ldots,m.$$

Properties of the Augmented Lagrangian

- For fixed $\lambda_i \in Z$ and $r_i > 0$, i = 1, ..., m, $L(\cdot, \lambda_1, ..., \lambda_m, r_1, ..., r_m)$ is
 - (i) weakly lower semicontinuous if f is;
 - (ii) convex if f is; and

(iii) continuously Fréchet differentiable if f is.

Moreover, in case (iii), the derivative of $L(\cdot, \lambda_1, \ldots, \lambda_m, r_1, \ldots, r_m)$ is given by

$$L_x(x,\lambda_1,\ldots,\lambda_m,r_1,\ldots,r_m)=f'(x)+\sum_{i=1}^m T^*\Lambda_i(x,\lambda_i,r_i),$$

and if f' is Lipschitz continuous, $f \in C^{1,1}$, so is $L_x(\cdot, \lambda_1, \ldots, \lambda_m, r_1, \ldots, r_m)$, $L \in C^{1,1}$.

• Subproblem (SUB): Find approximate stationary point of

$$\min_{x \in X} L(x, \lambda_1, \dots, \lambda_m, r_1, \dots, r_m) \text{ subject to } g(x) = 0.$$

The solvers of Heinkenschloss, Ridzal (2014) and Ziems, Ulbrich (2011) almost apply in Hilbert space; they technically require $L \in C^2$, and we have $L \in C^{1,1}$.

Denis Ridzal

8

ALESQP

1: Use ESQP to solve **(SUB)** and compute $(x^{(k)}, \zeta^{(k)}) \in X \times Y^*$ that satisfies

$$\|g(x^{(k)})\|_Y \leq \delta^{(k)} \quad \text{and} \quad \|f'(x^{(k)}) + \sum_i T^* \Lambda_i(x^{(k)}, \lambda_i^{(k)}, r_i^{(k)}) + g'(x^{(k)})^* \zeta^{(k)}\|_{X^*} \leq \varepsilon^{(k)}.$$

2: for
$$i = 1, ..., m$$
 do
3: if $||\Lambda_i(x^{(k)}, \lambda_i^{(k)}, r_i^{(k)}) - \lambda_i^{(k)}||_Z > r_i^{(k)} \tau_i^{(k)}$ then // penalty parameter updates
4: $r_i^{(k+1)} = \eta_i r_i^{(k)}$
5: $\theta_i^{(k+1)} = \min\{1/r_i^{(k+1)}, \theta_i\}$
6: $\tau_i^{(k+1)} = \tau_i^{(0)}(\theta_i^{(k+1)})^{\alpha_i}$ // geometric decay
7: else
8: $r_i^{(k+1)} = r_i^{(k)}$
9: $\theta_i^{(k+1)} = \min\{1/r_i^{(k+1)}, \theta_i\}$
10: $\tau_i^{(k+1)} = \tau_i^{(k)}(\theta_i^{(k+1)})^{\beta_i}$ // exponential decay
11: end if
12: if $||\Lambda_i(x^{(k)}, \lambda_i^{(k)}, r_i^{(k)})||_Z \le \nu_i(r_i^{(k+1)})^{\gamma_i}$ then // multiplier updates
13: $\lambda_i^{(k+1)} = \Lambda_i(x^{(k)}, \lambda_i^{(k)}, r_i^{(k)})$
14: else
15: $\lambda_i^{(k+1)} = \lambda_i^{(k)}$
16: end if
17: end for

ħ

10 Comparisons with Existing Approaches

- ALESQP incorporates multiple penalty functions to handle varying constraint scalings.
- ALESQP is related to **LANCELOT**^{\dagger} with two additional differences:
 - ALESQP can handle both finite and infinite dimensional spaces.
 - ALESQP keeps the equality constraints explicit and penalizes the constraints *Tx* ∈ *C*; this is related to the finite-dimensional SECO^{††} subproblem formulation.
- Existing infinite-dimensional augmented Lagrangians: Börgens, Kanzow, Steck (2019). There are three fundamental differences:
 - **Different subproblems**: ALESQP treats the equality constraint (e.g., PDE) **explicitly** versus implicitly through an exact nonlinear solve. Subproblems are *only* **equality-constrained**.
 - Inexact solves: ALESQP enables large-scale iterative linear solves and mesh adaptivity.
 - **Convergence analysis**: ALESQP theory assumptions are weaker and the results are stronger.
- In a nutshell, ALESQP is an infinite-dimensional extension of the SECO formulation with the inner workings of LANCELOT + multiple penalty functions + inexact linear solves.

[†]**Conn, Gould, Toint (1991)**, A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds, SINUM. ^{††}**Birgin, Bueno, Martínez (2016)**, Sequential equality-constrained optimization for NLP, Comp. Optim. Appl. Denis Ridzal

11 Convergence Theory Dual convergence

• Let $\{\lambda_i^{(k)}\}$ be an infinite sequence of multipliers for the *i*th constraint generated by ALESQP, and let $\gamma_i < 1/2$. If $r_i^{(k)} \to \infty$, then

$$\lim_{k\to\infty}\frac{1}{(r_i^{(k)})^{\alpha}}\|\lambda_i^{(k)}\|_Z=0\quad\forall\,\alpha>\gamma_i.$$

• Moreover, for the corresponding sequence of iterates $\{x^{(k)}\}$, the following are equivalent:

(i)
$$\liminf_{k \to \infty} d_{C_i}(Tx^{(k)}) = 0$$

(ii)
$$\liminf_{k \to \infty} \frac{1}{r_i^{(k)}} \|\Lambda_i(x^{(k)}, \lambda_i^{(k)}, r_i^{(k)}) - \lambda_i^{(k)}\|_Z = 0$$

(iii)
$$\liminf_{k \to \infty} \frac{1}{r_i^{(k)}} \|\Lambda_i(x^{(k)}, \lambda_i^{(k)}, r_i^{(k)})\|_Z = 0.$$

- Moreover,
 - if the Lagrange multipliers λ_i are updated finitely many times, or
 - if the penalty parameters r_j are updated finitely many times for all j = 1, ..., m, then
 - the sequence of multipliers $\{\lambda_i^{(k)}\}$ converges strongly to some $\bar{\lambda}_i \in Z$.

12 Convergence Theory

Stopping Conditions: Let $\delta_* > 0$, $\varepsilon_* > 0$ and $\tau_* > 0$. ALESQP exits if

$$\|g(x^{(k)})\|_Y \le \delta_*$$

 $\|L'(x^{(k)}) + g'(x^{(k)})^* \zeta^{(k)}\|_{X^*} \le \varepsilon_*$
 $\max_{i=1,...,m} d_{C_i}(Tx^{(k)}) \le au_*.$

• ALESQP either exits after a finite number of iterations; or produces a sequence that satisfies the asymptotic stationarity conditions:

$$\|g(x^{(k)})\|_Y \to 0$$

and

$$\limsup_{k\to\infty} \langle -(f'(x^{(k)})+g'(x^{(k)})^*\zeta^{(k)}), y-x^{(k)}\rangle_{X^*,X} \leq 0 \quad \forall y\in T^{-1}(C).$$

13 Convergence Theory Feasible

- Strong accumulation points of $\{x^{(k)}\}\$ are stationary under mild assumptions.
- Finite Dimensions: ALESQP converges to a stationary point.
- Infinite Dimensions: In general, weak accumulation points \bar{x} of $\{x^{(k)}\}$ satisfy: $\exists \bar{t}_i > 0$ with $\bar{t}_1 + \ldots + \bar{t}_m = 1$ such that

$$T\bar{x}\in \bar{t}_1C_1+\ldots+\bar{t}_mC_m,$$

but need not be **feasible**!

- Weak accumulation points of $\{x^{(k)}\}$ are <u>feasible for many practical situations</u>:
 - m = 1, or
 - T completely continuous, or
 - $x^{(k_j)}$ converges strongly to \bar{x} , or
 - $\exists X_0$ that is compactly embedded in X with $\{x^{(k_j)}\} \subset X_0$ and $x^{(k_j)} \rightharpoonup \bar{x}$ in X_0 .
- Holds for finite-dimensional X and many PDECO problems with control/state constraints.
- Require strong assumptions on g to show that weak accumulation points are stationary.

\bullet Can extend theory to nonlinear ${\cal T}$ to handle, e.g., complementarity constraints.

¹⁴ Subproblem Solver: Trust-region SQP

Start with the equality-constrained optimization problem:

 $\min_{x \in X} L(x) \text{ subject to } g(x) = 0$

where $L: X \to \mathbb{R}$ and $g: X \to Y$, for some Hilbert spaces X and Y, and where L is Lipschitz continuously and g is twice continuously Fréchet differentiable.

Define SQP Lagrangian functional $\mathscr{L}: X \times Y^* \to \mathbb{R}$:

$$\mathscr{L}(x,\zeta) = L(x) + \langle \zeta, g(x) \rangle_{Y^*,Y}$$

At *j*th SQP iteration solve *nonconvex* quadratic trust-region subproblem:

$$\begin{split} \min_{s \in X} & \frac{1}{2} \langle \nabla_{xx} \mathscr{L}(x_j, \zeta_j) s, s \rangle_{X^*, X} + \langle \nabla_x \mathscr{L}(x_j, \zeta_j), s \rangle_{X^*, X} + \mathscr{L}(x_j, \zeta_j) \\ \text{s.t.} & g'(x_j) s + g(x_j) = 0, \quad \|s\|_X \leq \Delta_j \end{split}$$

Extended the Byrd-Omojokun composite-step approach to support inexact linear solvers.

¹⁵ Composite-step Method for Trust-region Subproblem

- Trust-region step: $s_j = n_j + t_j$
- Quasi-normal step n_j:

reduces linear infeasibility

- $\min_{n \in \mathcal{X}} \qquad \|g'(x_j)n + g(x_j)\|_Y^2$ s.t. $\|n\|_X \le \zeta \Delta_j$
- Tangential step t_j:

-

improves optimality while staying in the null space of the linearized constraints

$$\min_{t\in X} \quad \frac{1}{2} \langle \nabla_{xx} \mathscr{L}(x_j,\zeta_j)(t+n_j), t+n_j \rangle_{X^*,X} + \langle \nabla_x \mathscr{L}(x_j,\zeta_j), t+n_j \rangle_{X^*,X} + \mathscr{L}(x_j,\zeta_j)$$

s.t. $g'(x_j)t = 0$, $||t + n_j||_X \leq \Delta_j$

Omojokun (1989), Byrd, Hribar, Nocedal (1997), Dennis, El-Alem, Maciel (1997)

¹⁶ Matrix-free Trust-region SQP Algorithm

- Compute quasi-normal step n_j using Powell dogleg, where for the Newton step we solve an augmented system inexactly.
- Solve tangential subproblem for *t̃_j* via projected Steihaug-Toint CG, where the projections are computed by solving augmented systems <u>inexactly</u>.
- Restore linearized feasibility, for tangential step t_j, via another inexact projection.
- Update Lagrange multipliers ζ_{j+1} by solving an augmented system <u>inexactly</u>.
- Evaluate progress.

Heinkenschloss, Ridzal (2014)

Augmented System

$$\left(egin{array}{cc} l_{X,X^*} & g'(x_j)^* \\ g'(x_j) & 0 \end{array}
ight) \left(egin{array}{cc} y^1 \\ y^2 \end{array}
ight) = \left(egin{array}{cc} b^1 \\ b^2 \end{array}
ight) + \left(egin{array}{cc} e^1 \\ e^2 \end{array}
ight)$$

• The size of $(e^1 e^2)$ is governed by the progress of the optimization algorithm:

$$\|e^1\|_{X^*}+\|e^2\|_Y\leq \mathscr{T}\left(\|b^1\|_{X^*},\|b^2\|_Y,\|y^1\|_X,\Delta_j
ight)$$

• In optimal control, augmented systems are:

$$\left(\begin{array}{cc}I_{X,X^*} & g'^*\\g' & 0\end{array}\right) \rightarrow \left(\begin{array}{cc}I_{X_u,X^*_u} & g^*_u\\ & I_{X_z,X^*_z} & g^*_z\\g_u & g_z & 0\end{array}\right)$$

where u are the states and z the controls.

17 Projected CG Preconditioner

- Motivated by a comment on the "perfect preconditioner" for the projected CG method for optimization, from Gould, Hribar, Nocedal (2002).[†]
- Idea: Replace I_{X,X^*} with **Augmented Lagrangian** derivatives:

$$\begin{pmatrix} B(x_j) + T^* \left(\sum_{i=1}^m r_i^{(k)} (I_{Z,Z^*} - D_{ij}) \right) T & g'(x_j)^* \\ g'(x_j) & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ 0 \end{pmatrix} + \begin{pmatrix} e_1 \\ e_2 \end{pmatrix},$$

where $B(x_j) \in \mathcal{L}(X, X^*)$ is a nonnegative operator approximating $f''(x_j)$ and D_{ij} denotes the Newton derivative, see Chen, Nashed, Qi (2000)^{††}, of $\mathbf{P}_{C_i}((r_i^{(k)})^{-1}\lambda_i^{(k)} + Tx_j)$.

- This choice can accelerate projected CG significantly.
- At the same time, this system is more difficult to solve than a corresponding augmented system, and challenging to integrate into projected CG when using iterative linear solvers.

[†]Gould, Hribar, Nocedal (2002), On the solution of equality constrained quadratic programs, SISC. ^{††}Chen, Nashed, Qi (2000), Smoothing/semismooth methods for nondifferentiable operator equations, SINUM.

Denis Ridzal

ALESQP

ALESQP Components

Note: Each box is an iterative process!

19 Numerical experiments

- Consider max entropy and semilinear PDECO problem.
- Each constraint has its own starting penalty parameter.
- Discretize infinite-dimensional objects using triangular finite elements on regular grids.
- Use diagonal Riesz maps in every ALESQP component.
- Consider direct (exact) and iterative (inexact) solves.

Iterative augmented system solves:

- We use MINRES with constant SPD preconditioners.
- Unpreconditioned for the max entropy problem.
- Schur complement preconditioner[†] for semilinear problem. Linearized forward and adjoint systems are "solved" using a few V-cycles of algebraic multigrid.

[†]**Rees, Dollar, Wathen (2010)**, *Optimal solvers for PDE-constrained optimization*, SISC.

Rényi Entropy Maximization with Constraints 20

$$\begin{split} \max_{\rho \in L^{p}(\Omega)} &-\frac{2}{3} \log \left(\int_{\Omega} \rho(x)^{2.5} \, \mathrm{d}x \right) \\ \text{subject to} & \rho \geq 0 \text{ a.e.} \\ & \int_{\Omega} \rho(x) \, \mathrm{d}x = 1 \\ & \int_{\Omega} \rho(x) x \, \mathrm{d}x = \mu \\ & \det \left(\int_{\Omega} \rho(x) (x - \mu) (x - \mu)^{\top} \, \mathrm{d}x \right) \leq \sigma, \end{split}$$
where $\mu = (0.45, 0.45)$ and

$$\sigma = \frac{1}{2} \det \left(\int_{\Omega} (x - \mu) (x - \mu)^{\top} dx \right) \approx 0.00368.$$

Up to 263,169 optimization variables, 3 equality constraints and 263,170 inequality constraints.

Denis Ridzal

1

21 Maximum Rényi Entropy

Mesh	AL	SQP	CG	normg	grad-lag	feas
64x64	11	56	249	1.11e-16	1.77e-08	1.42e-08
128x128	11	54	242	1.36e-16	3.58e-08	2.09e-07
256x256	12	67	342	3.55e-16	2.11e-08	2.27e-08
512x512	12	65	312	8.85e-16	1.15e-08	7.46e-09

- ALESQP performance for varying discretization (Mesh).
- AL is the total number of augmented Lagrangian iterations.
- SQP is the total number of SQP iterations.
- CG is the total number of conjugate gradient iterations.
- normg is the equality constraint violation $||g(x^{(k)})||_Y$.
- grad-lag is the gradient norm for subproblem Lagrangian, $\|L'_k(x^{(k)}) + g'(x^{(k)})^* \zeta^{(k)}\|_{X^*}.$
- feas is the constraint violation $\max_i d_{C_i}(Tx^{(k)})$.

We observe that the AL, SQP, and CG iterations are nearly mesh independent.

22 Maximum Rényi Entropy

Mesh	AL	SQP	CG	normg	grad-lag	feas	avg.aug
64x64	11	57	261	2.85e-14	7.71e-08	1.49e-07	7.3
128x128	13	52	249	3.72e-16	2.77e-08	2.92e-09	7.7
256x256	11	45	177	3.60e-16	2.88e-08	9.72e-09	7.9
512x512	13	55	248	1.77e-15	2.94e-08	2.75e-08	8.2

- avg.aug are the average numbers of MINRES iterations per call.
- Again, the AL, SQP, and CG iterations are nearly mesh independent.
- avg.aug are nearly mesh independent.
- avg.aug are very small without preconditioning.
- feas is as small as 2.92e-09.
- Nominal linear system solver tolerances ranged from 1e-4 to 1e-1.

23 Maximum Rényi Entropy

tol	AL	SQP	CG	normg	grad-lag	feas	avg.aug
1e-6	13	52	249	3.72e-16	2.77e-08	2.92e-09	7.7
1e-8	16	55	274	2.99e-16	3.15e-10	5.15e-11	8.0
1e-10	20	59	305	2.22e-16	3.90e-12	3.47e-13	8.4
1e-12	26	64	345	1.67e-16	2.38e-14	3.47e-15	9.1

- Fix the mesh resolution to 128x128.
- Vary augmented Lagrangian nominal tolerance tol.
- SQP iterations increase by 20% and CG iterations by 40% to add 6 digits of accuracy!
- avg.aug are tolerance independent.
- Smallest feas is 3.47e-15.
- Nominal linear system solver tolerances ranged from 1e-4 to 1e-1.

24 Optimization of Semilinear PDE with Constraints

$$\begin{split} \min_{u \in H_0^1(\Omega), \ z \in L^2(\Omega)} & \left\{ \frac{1}{2} \| u - u_d \|_{L^2(\Omega)}^2 + \frac{\alpha}{2} \| z \|_{L^2(\Omega)}^2 \right\} \\ \text{subject to} \\ & -\Delta u + u^3 = z \quad \text{in } \Omega \\ & u = 0 \quad \text{on } \partial\Omega \\ & u_a \le u \quad \text{a.e. in } \Omega \\ & z_a \le z \le z_b \quad \text{a.e. in } \Omega, \end{split}$$

$$u_{d} = -1, \quad \alpha = 10^{-3}, \quad z_{a} = -10, \quad z_{b} = 10,$$

$$u_{a}(x) = -\frac{2}{3} + \frac{1}{2} \min \left\{ x_{1} + x_{2}, \\ \min \{1 + x_{1} - x_{2}, \min \{1 - x_{1} + x_{2}, 2 - x_{1} - x_{2}\} \} \right\}.$$

$$u_{a} \text{ multiplier}$$

$$u_{a} \text{ multiplier}$$

$$u_{a} \text{ multiplier}$$

Up to 2,000,600 optimization variables, 970,299 equality constraints and 3,030,901 inequality constraints.

Denis Ridzal

with

²⁵ Optimization of Semilinear PDE

		Contro.	1		State			Control + State		
Mesh	AL	SQP	CG	AL	SQP	CG	AL	SQP	CG	
64x64	11	21	55	15	29	73	18	40	95	
128x128	11	21	57	17	37	97	18	45	110	
256x256	15	24	65	18	39	105	20	47	119	
512x512	15	26	68	20	44	122	22	50	131	

- ALESQP performance for varying **2D mesh** (Mesh).
- Control: only control constraints (use z_b = -1);
 State: only state constraints;
 Control + State: both control and state constraints.
- AL is the total number of augmented Lagrangian iterations.
- SQP is the total number of SQP iterations.
- CG is the total number of conjugate gradient iterations.

We observe that the AL, SQP, and CG iterations are nearly mesh independent.

²⁶ Optimization of Semilinear PDE

 64×64 mesh

- State-constraint penalties increase significantly.
- Control-constraint penalties do not increase much.
- Underlines the need for multiple penalties!
- Very mild mesh dependence in the state-constraint penalty parameter sequence.

27 Optimization of Semilinear PDE

Mesh	AL	SQP	CG	normg	grad-lag	feas	avg.aug	avg.augCG
24x24x24	32	38	74	3.21e-13	1.39e-10	5.70e-07	6.5	16.1
40x40x40	32	48	98	1.89e-10	2.97e-08	4.71e-07	7.3	30.8
64x64x64	29	50	128	1.04e-10	5.11e-08	6.05e-08	9.3	44.4
$100 \times 100 \times 100$	31	55	125	1.43e-10	8.58e-08	3.47e-07	11.7	54.4

- **3D version of the** Control + State **problem** with hexahedral mesh and $u_a = -\frac{1}{2}$.
- avg.augCG are the average numbers of MINRES iterations per call in CG. Recall: In CG we change the augmented system to account for AL penalty terms.
- avg.aug are the average numbers of MINRES iterations per call elsewhere.
- Again, the AL, SQP, and CG iterations are nearly mesh independent.
- avg.aug and avg.augCG are somewhat mesh dependent.
- feas is as small as 6.05e-08.
- Nominal linear system solver tolerances ranged from 1e-6 to 1e-2.

28 Optimization of Semilinear PDE

tol	AL	SQP	CG	normg	grad-lag	feas	avg.aug	avg.augCG
1e-6	32	48	98	1.89e-10	2.97e-08	4.71e-07	7.3	30.8
1e-8	49	55	112	3.21e-13	8.15e-11	1.20e-09	7.6	46.4
1e-10	63	61	124	1.82e-15	3.26e-13	5.30e-11	7.9	87.4
1e-12	80	66	134	1.82e-15	8.40e-14	2.76e-13	8.3	103.8

- Fix the mesh resolution to 40x40x40.
- Vary augmented Lagrangian nominal tolerance tol.
- SQP and CG iterations increase by 35% to add 6 digits of accuracy!
- Very mild increase in avg.aug and moderate increase in avg.augCG.
- Smallest feas is 2.76e-13.
- Nominal linear system solver tolerances ranged from 1e-6 to 1e-2.

- ALESQP is well suited for infinite-dimensional optimization with general constraints.
- Augmented Lagrangian that penalizes inequalities, with equality-constrained subproblems.
- Subproblem solver: Matrix-free trust-region SQP method with iterative linear solvers.
- ALESQP uses a constraint decomposition with multiple penalties.
- In optimal control, ALESQP provides a unified framework to efficiently handle general constraints on both the state variables and the control variables.
- Exhibits fast convergence and remarkable accuracy, even with inexact linear solves.
- ALESQP uses the inner SQP loop economically!
- Two papers:
 - ALESQP: Submitted.
 - Banach-space SQP, specialized for use with ALESQP: In progress.