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Pathogen Transmission
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Virus Transmission: Sneezing
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Virus Transmission: Breathing
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Virus Transmission: HVAC/Wakes

0.2-0.3 m/s
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Virus Transmission

• Entering the Body: Nose, Mouth, Eyes

• Exiting the Body: Nose, Mouth

– Sneeze, Cough, Shout, Sing, Speak, …

• ➔ Transmission Modes:

– Person-to-Person : Large/Small Droplets

– Person-Air-Person : Small Droplets

– Person-Surface-Person : Large Droplets
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Droplet Distribution When Coughing

R.G. Loudon and R.M. Roberts - Droplet Expulsion from the Respiratory Tract; Am. Rev. 

Respir. Dis. 95, 3, 435–442 (1967).
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Sink Velocities of Droplets in Air

Diameter [mm] Sink Velocity [m/sec] Reynolds-Nr.

1.0e+00 3.01e+01 1.99e+03

1.0e-01 3.01e-01 1.99e+00

1.0e-02 3.01e-03 1.99e-03

1.0e-03 3.01e-05 1.99e-06

1.0e-04 3.01e-07 1.99e-09
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Droplet Evaporation

X. Xie, Y. Li, A.T.Y. Chwang, P.L. Ho, W.H. Seto - How Far Droplets Can Move in Indoor 

Environments – Revisiting the Wells Evaporation-Falling Curve; Indoor Air 17, 211-225 (2007). 

doi:10.1111/j.1600-0668.2006.00469.x
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Viral Load / Infectious Dose

• Many Factors: 

– State of Immune Defenses of Victim

– Timing of Viral Entry (All at Once, Piece by Piece)

– Hair and Mucous in Nasal Vessels, ……

• Data From Biological Warfare Agents [Fra97]

– Brucellosis 10-100

– Q fever 1-10

– Tularaemia 10-50

– Smallpox 10-100

– Viral Haemorrhagic Fevers 1-10

– Tuberculosis 1 (!!) 
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Viral Load / Infectious Dose

• Many Factors: 

– State of Immune Defenses of Victim

– Timing of Viral Entry (All at Once, Piece by Piece)

– Hair and Mucous in Nasal Vessels, ……

• Data From Biological Warfare Agents [Fra97]

– Brucellosis 10-100

– Q fever 1-10

– Tularaemia 10-50

– Smallpox 10-100

– Viral Haemorrhagic Fevers 1-10

– Tuberculosis 1 (!!) 

Cov-19: 100-200
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Covid-19 Lifetime Outside the Body

• Air: 1-2 Hours

• Some Surfaces: 1-2 Days

• Some Variability With Humidity/Temperature

• Some Variability With UV/Sunlight Radiation

– The More Sunlight, The Shorter The Lifetime
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Infectivity of Covid-19

• Different Types: How Effective ?
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Infectivity of Covid-19

• Different Types: How Effective ?
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Covid-19 vs. Influenza/Flu

• Max Yearly US Deaths From Influenza/Flu: 60K

– No Lockdowns, No Preventive Measures

• US Deaths After 12-Months of Covid-19: 400K

– With Lockdowns, With Preventive Measures
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Covid-19 vs. Influenza/Flu

• Max Yearly US Deaths From Influenza/Flu: 60K

– No Lockdowns, No Preventive Measures

• US Deaths After 12-Months of Covid-19: 400K

– With Lockdowns, With Preventive Measures

• ➔ Covid-19 Orders of Magnitude More Deadly 

Than Influenza/Flu
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Mitigation Options
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Mitigation of Virus Transmission

• 2 Main Modes:

– Large Droplets → `Spitting’

– Small Droplets → `Smoke’
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Procedure

Measure

Large Droplets

(spitting)

Small Droplets

(cigarette smoke)

Person-Air-

Person

Person-Surface-

Person

2m/6ft Distance

Face Masks

Periodic Hand 

Cleaning 

Plexiglass 

Shields

1-Way Person 

Traffic

2x Daily 

Cleaning

Nightly UV 

Cleaning

Maximize Fresh 

Air in HVAC

Hard UV Lamps 

in HVAC Ducts

HEPA Filters in 

HVAC Ducts

Upper Room UV 

Cleaning
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Physics
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Air: Navier-Stokes, Incompressible

Conservation of Mass, Momentum and Energy:

r:Density T: Temperature

v:Velocity cp: Heat Capacitance

p:Pressure k: Thermal Conductivity

m:Viscosity 𝛽: Expansion Coefficient

𝐠: Gravity f,s: External Forces/Heat Sources

∇ ⋅ 𝐯 = 0
𝜌𝐯,𝑡 + 𝜌𝐯 ⋅ ∇𝐯 + ∇𝑝 = ∇𝜇∇𝐯 + 𝜌𝐠𝛽(𝑇0 − 𝑇) + 𝐟

𝜌𝑐𝑝𝑇,𝑡 + 𝜌𝑐𝑝𝐯 ⋅ ∇𝑇 = ∇𝑘∇𝑇 + s
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Equations for Diagnostics

• Age of Air

𝑎,𝑡 + 𝐯 ⋅ ∇𝑎 = 1

• Pathogen Concentration

𝑐,𝑡 + 𝐯 ⋅ ∇𝑐 = ∇𝑑𝑐∇𝑐 + sc

• UV Irradiation

𝐼,𝑡 + 𝐯 ⋅ ∇𝐼 = ∇𝑑𝐼∇𝐼 + sI

• …
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Particle Motion and Temperature

• Velocity and Position

• Temperature
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Momentum Transfer

• Drag Force of Each Particle

• Drag Coefficient and Reynolds-Number
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Heat Transfer

• Heat Flux For Each Particle

• Film Coefficient, Nusselt- and Prandtl-Number
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Numerics
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Basic Elements of Solver (1)
• Spatial Discretization: Unstructured Grids

– Arbitrary Geometries

– Adaptive Refinement

• Spatial Discretization: Simple FEM

– One-Type Element Code: Speed and Simplicity

– Use Tetrahedra Even in Boundary Layers

• Temporal Discretization: Explicit Advection

– Physically Interesting Scales ➔ Need Accuracy

– 1-Step Schemes: Moving Grids, Adaptive Refine/Remesh

• Temporal Discretization: Implicit Viscous/Pressure

– Low-Storage Iterative Solvers
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Basic Elements of Solver (2)
• Steady Results: Independent of Timestep

– Confidence

– Convergence Study Possible 

• Edge-Based Data Structures

– Reduction of Indirect Addressing

– Reduction in Flops

• Extensive Renumbering

– Avoidance of Cache-Misses

– Shared-Memory Parallel Machines

• Preconditioning:

– Diagonal: Isotropic Grid

– Linelets: Stretched (RANS) Grid
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Temporal Discretization: Δ-Scheme (1)

• Advective / Diffusive Prediction:

• Pressure Correction:

v𝑛+1 = v𝑛 + Δv𝑎 + Δv𝑝 = v∗ + Δv𝑝

1

Δ𝑡
− θ∇𝜇∇ (v∗ − v𝑛) + v𝑛 ⋅ ∇v𝑛 + ∇𝑝𝑛 = ∇𝜇∇v𝑛

∇ ⋅ v𝑛+1 = 0
v𝑛+1 − v∗

Δ𝑡
+ ∇(𝑝𝑛+1 − 𝑝𝑛) = 0

⇒ ⇒ ∇2(𝑝𝑛+1 − 𝑝𝑛) =
∇ ⋅ v∗

Δ𝑡

v𝑛 → v∗

𝑝𝑛 → 𝑝𝑛+1
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Temporal Discretization: Δ-Scheme (2)

• Velocity Correction:

Remarks:

– Residuals of Pressure Correction Vanish for Steady-

State

➔ Results Not Depend on Projection Scheme

➔ Results Not Depend on Δt

v𝑛+1 = v∗ − Δ𝑡∇(𝑝𝑛+1 − 𝑝𝑛)

v∗ → v𝑛+1
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Particle Motion and Temperature

• Position, Velocity and Temperature: ODEs of Type

• Integrated Explicitly; Typically: 4th Order Runge-

Kutta
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Particle Tracking

• Need: Flow Variables At Location of Particle

• ➔ Need Host Element for Each Particle

• Initialization: Bins + Near-Neighbour Search

• Incremental: Near-Neighbour Search

– Vectorized and Parallelized for OMP

– Also Running in MPI
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UV Radiation

• Irradiation Function of Distance/Angle

• Shading Possible ➔ Ray-Tracing

– From Element (Gauss-Points) to UV Lamp

𝑠𝐼 ~
1

𝑟2
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Raytracing With FEM Grids

• Any Point P:

• ➔

• Given Input Location, Obtain Output

• Output Faces: ξo=0

• Get min(Δti), Δti > 0 ➔ Neighbour Element

𝐱𝑃 = 𝐱𝐴 + 𝐱𝐵𝐴 ξ + 𝐱𝐶𝐴 η + 𝐱𝐷𝐴 ζ = 𝐱𝐴 + 𝐆 𝝃

𝝃 = 𝐆−1𝐱𝑃𝐴

𝝃o = 𝝃i + 𝐆−1Δ𝐱= 𝝃i + 𝐆−1𝐯Δt = 𝝃i + 𝜶 Δt

J. Favre and R. Löhner – Ray Tracing With a Space-Filling Finite Element Mesh; 

IJNME 37, 3571-3580 (1994)

i

o

A
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C
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Ceiling UV In Hospital Room
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Coupling of CFD and CCD
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Coupling of CFD and CCD

For Each Gridpoint:

Temperature

Smoke

Toxic Substances

Pathogens

…

3-D to Tria

(CCD Background Grid)

CFD: FEFLO

CCD: PEDFLOW

Ellipse/Point to 3-D Body

For Each Pedestrian:

Position, Velocity

Temperature

Pathogens

…
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CCD → CFD

• Several Options Possible

• Body Fitted

– Transcribe Discrete Surface from CCD → CFD / Merge

– Move/Smooth/Remesh CFD Mesh

• Embedded

– Transcribe Discrete Surface from CCD → CFD

– Obtain Intersections With Edges/New BC

• Immersed

– Transcribe Discrete Volume from CCD → CFD

– Obtain CFD Points Inside CCD Domain/New BC
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CCD → CFD

As Tet-Mesh As Spheres
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Immersed Bodies
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Immersed Body: Options

• Desired: In Body Region: vf = wb

• Kinematic: Impose: vf = wb

• Kinetic : Use Force: f = c0 (vf – wb)  [Goldstein]

• Kinetic/Kinematic: [Mohd-Yusof]:
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Immersed Body: Extensions

• Kinematic:

– Extend to Higher Order [Balaras]

– Same as for Embedded

• Kinetic: 

– Use Lagrange Multipliers [Glowinsky]
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Search for Points in Bodies: Options

• Option 1:

– Store CFD Points in Bin/Octree

– Loop Over Immersed Body Elements

• Get Bounding Box

• Get CFD Points in Bounding Box

• Detailed In/Out Analysis

• Option 2:

– Store Immersed Body Elements in Bin/Octree

– Loop Over CFD Points

• Get Immersed Body Element in Region

• Detailed In/Out Analysis
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Pedestrian Motion
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Discrete Models

• Any Pedestrian Flow Simulation:

– Global Movement: Strategic, Tactical

– Local Movement: Operational

• Global Movement

– Targets (Regions/Lines/…) ➔Will Force

• Local Movement

– Collision Avoidance

• Social Force/ Contact Models

– Local Geometry Info

• Walls, Paths, Roughness, …
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PEDESTRIAN MOTION

• Newton's Law:

m v,t = f

x,t = v

• m: Mass

• v: Velocity

• x: Position

• f: Sum of All Forces

• Modeling Effort: f



CFD Center, George Mason University

PEDESTRIAN FORCES
• Internal Forces

– Will Force (Get There (in Time))

– Pedestrian Collision Avoidance Forces: 

Intermediate Range

– Pedestrian Collision Avoidance Forces : Near 

Range

– Wall/Obstacle (Collision) Avoidance Forces

• External Forces

– Contact: Other Pedestrians

– Contact: Walls/Obstacles

• …
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PEDFLOW
• Mixture of Agent-Based and Social Force Model

• Forces Via by Minimal Set of Well-Defined  

Parameters

– Relaxation Time (Fitness)

– Desired Velocity

– Pushiness (Distraction)

• Strategic and Tactical: Desired Locations/Time

• Operational: Local Collision Avoidance

• Background Grid for Geometry/Spatial Search

• Edge-Based Data Structures for Pedestrians

R. Löhner – On The Modeling of Pedestrian Motion;

Appl. Math. Mod. 34, 2, 366-382 (2010).
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Madrid Metro Station

• 3/11/2004 Attack

• Did Blast Analysis

• Follow-Up
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Madrid Bomb Attack
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Madrid Bomb Attack
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Madrid Bomb Attack
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Evacuation from Medina Mosque

• Over 105 Pedestrians

• Run on Laptop
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Rendering via 3-D Studio Max
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Examples
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Examples (1)

• Physics and Numerics: FEFLO

• Flow Initialization:

– Ambient: Quiescent, 20oC

– Sneeze: Spherical Region, r=5cm, Near Mouth

– V=5f(t)    [m/sec]   ;  T=20+(37-20)f(t)    [oC]

• Particle Initialization

– 4 Size Groups; Released Every 0.005 sec for 0.1 sec

– V=5 m/sec ; T=37oC

f(t)

t
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Examples (2)

• 3 Different Timescales, Depending on Size

– O(100) sec: Fast, Ballistic Drop of Large d=1.0 mm 

Particles 

– O(101) sec: Slower Drop of Intermediate d=0.1 mm 

Particles

– O(102) sec: Transport of Small d<0.01 mm Particles 

Through Air

• HVAC Systems: 

– Good Mixers

– Complex Flowfields

– ➔ Condusive to Pathogen Transmission
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Sneezing in TSA Queues

12.47 Mels
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Sneezing in TSA Queues
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Sneezing in TSA Queues
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Sneezing in Hospital Room

2.25 Mels
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Sneezing in Hospital Room
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Hospital Room With UV Lamp
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Hospital Room With UV Lamp
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Sneezing in a Generic Classroom
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Sneezing in a Generic Classroom
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Sneezing in a Generic Classroom
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Classroom With Ceiling-UV

NBC Universal Today Show, September 30 (2020), see: https://www.today.com/health/ventilation-

covid-19-reduce-spread-proper-airflow-t192366
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Sneezing in Subway
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Sneezing in Subway
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Sneezing in Subway
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M. Gröndahl, Ch. Goldbaum and J. White - What Happens to Viral Particles on the Subway;

New York Times, August 10 (2020); 

see also: https://www.nytimes.com/interactive/2020/08/10/nyregion/nyc-subway-coronavirus.html
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Narrow Corridor
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Narrow Corridor
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Narrow Corridor: Viral Load
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Reopening After the Crisis
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Reopening After the Crisis

• Will Have/Need Sensors to Monitor Environment

• Basic Questions:

– How Many ?

– Placed Where ?

• Current Approach:

– Run Many Scenarios Cases

– Place Many Sensors

– Keep (Recursively) the One Detecting the Most Cases
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Hospital Room: Problem Setup
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Hospital Room: Average Velocities
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Case Study: Hospital Room

• Cases 1,2,3:

– Contaminant/Pathogens Through Each of the 3 Different 

Entry Vents

– 0-60 sec

• Case 4:

– Virus Production from Patient

– 0-10 sec

• Run for 300 sec (5 min) of Real Time

• Measure Contaminant/Pathogen Concentration on 

all Walls



CFD Center, George Mason University

Hospital Room: Age of Air
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Max Values Measured During 5 Mins
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Wall Data Recorded

• Points With No Cases Measured: 4308

• Points With 1 Case  (Out of 4) Measured: 3377

• Points With 2 Cases (Out of 4) Measured: 1010

• Points With 3 Cases (Out of 4) Measured: 0

• Points With 4 Cases (Out of 4) Measured: 0

• Excluded Location:

– Above zmin (Minimum Height Requirement)

– Not on Beds/Furniture/Patient/Attendant
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Result: 2 (Optimal) Sensors
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Conclusions

• Summarized:

– Mechanical Characteristics of Virus Contaminants

– Transmission Via Droplets and Aerosols

• Emphasis on High-Fidelity (Hi-Fi) Physics

– PDEs

– Appropriate Numerical Methods

• Examples from the Built Environment

– TSA Queues, Hospital Rooms, Corridors, Trains, …

• Optimal Placement of Sensors
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Outlook

• Increase Realism

– Boundary Conditions for HVAC Systems [Entry, Mixing, …]

• Streamlining Simulation Toolbox/Workflow

• Field These Tools To Enable Smooth Post-Pandemic 

Transition



CFD Center, George Mason University

Thank You Very Much for 

Your Attention
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Additional Material
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Temporal Discretization: Δ-Scheme (1)

• Advective / Diffusive Prediction:

• Pressure Correction:

v𝑛+1 = v𝑛 + Δv𝑎 + Δv𝑝 = v∗ + Δv𝑝

1

Δ𝑡
− θ∇𝜇∇ (v∗ − v𝑛) + v𝑛 ⋅ ∇v𝑛 + ∇𝑝𝑛 = ∇𝜇∇v𝑛

∇ ⋅ v𝑛+1 = 0
v𝑛+1 − v∗

Δ𝑡
+ ∇(𝑝𝑛+1 − 𝑝𝑛) = 0

⇒ ⇒ ∇2(𝑝𝑛+1 − 𝑝𝑛) =
∇ ⋅ v∗

Δ𝑡

v𝑛 → v∗

𝑝𝑛 → 𝑝𝑛+1
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Temporal Discretization: Δ-Scheme (2)

• Velocity Correction:

Remarks:

– Residuals of Pressure Correction Vanish for Steady-

State

➔ Results Not Depend on Projection Scheme

➔ Results Not Depend on Δt

v𝑛+1 = v∗ − Δ𝑡∇(𝑝𝑛+1 − 𝑝𝑛)

v∗ → v𝑛+1
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Spatial Discretization: Advection (1)

• Galerkin:

𝐫i = 𝐷𝑖𝑗𝐅ij = 𝐷𝑖𝑗 𝐟𝑖 + 𝐟𝑗

ij

k

ij

k

ij

ij

ij

k
k

ijk

ik
ij

i ddD
D

d
SFS === ,,f

𝑑𝑘
𝑖𝑗
=
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2
න 𝑁,𝑘
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Spatial Discretization: Advection (2)

• Need Consistent Numerical Fluxes

– Integration Along Characteristics

– Taylor-Galerkin/Streamline Diffusion/SUPG/GLS/…

– Edge-Based Upwinding

• Consistent Numerical Flux

• Higher Order Scheme via Limiting (e.g. MUSCL)

( ) ( )k

j

k

i

ij

k

ij

ji

ij

ji S vv
2

1
v,vFij +=−−+= vvff
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Spatial Discretization: Divergence (1)

• Galerkin:

• Need Consistent Numerical Fluxes (LBB Condition)

– Different Functional Spaces for v,p (e.g. Mini-Element)

– Artificial Viscosity/Stabilization

– Edge-Based Consistent Numerical Flux

ri = 𝐷𝑖𝑗Fij = 𝐷𝑖𝑗 f𝑖 + f𝑗

f𝑖 = 𝑆𝑘
𝑖𝑗
v𝑖
𝑘
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Spatial Discretization: Divergence (2)

• Consistent Numerical Flux

• Higher-Order (4th Order Damping)

( )
ij

ij
ij

ji

ij

ji
l

t
pp


=−−+=  ,ffFij

Fij = f𝑖 + f𝑗 − 𝜆𝑖𝑗 𝑝𝑖 − 𝑝𝑗 +
𝐥𝑖𝑗

2
⋅ ∇𝑝𝑖 + ∇𝑝𝑗
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Walls: Boundary Conditions
• Walls: Bouncing, Sticking, Gliding, …

• Embedded Surfaces

Bouncing Sticking Gliding


