Inverse Problems Without Adjoints: Ensemble Approaches

Andrew Stuart

Computing and Mathematical Sciences California Institute of Technology

AFOSR, DARPA, EPSRC, NSF, ONR Allen Philanthropies, Mission Control for Earth, Schmidt Futures

Sayas Numerics Seminar

April 13th 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Overview

Ensemble Kalman Methods For Inverse Problems

Mathematical Structure

Guiding Examples

Rough Forward Models

Refineable Ensemble Methods

Closing

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ●

Ensemble Kalman Methods For Inverse Problems

- Reich [38] (Assimilation step in data assimilation)
- Chen & Oliver [11] (Randomized maximum likelihood)
- Emerick and Reynolds [14] (Iterative ensemble smoother)
- Ernst, Sprungk and Starkloff [15] (Limitation in non-Gaussian setting)
- Iglesias, Law and S [25] (Ensemble Kalman inversion EKI)
- Iglesias [24] (Stopping rules for EKI)
- Evensen [16] (Iterative ensemble smoothers)
- Blömker, Schillings and Wacker [8], [9] (Numerical analysis perspective)
- Schneider, S and Wu [44] (Learning SDEs w/EKI)
- Schneider, S and Wu [43] (Sparsity w/EKI)

Problem Statement

Find **u** from y where $G : \mathcal{U} \mapsto \mathcal{Y}, \eta \sim N(0, \Gamma)$ is noise and

$$y = \mathsf{G}(\mathbf{u}) + \eta.$$

Main Approaches

$$\begin{array}{ll} \textit{Optimization} \quad \Phi(u) = \frac{1}{2}|y - G(u)|_{\mathsf{F}}^2 + \frac{1}{2}|u|_{\Sigma}^2;\\ \textit{Probability} \quad \mathbb{P}(u|y) \propto \exp(-\Phi(u)). \end{array}$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Problem Statement

Find **u** from y where $G : \mathcal{U} \mapsto \mathcal{Y}, \eta \sim N(0, \Gamma)$ is noise and

$$y = \mathsf{G}(\mathbf{u}) + \eta.$$

Main Approaches

$$\begin{array}{ll} \textit{Optimization} \quad \Phi(u) = \frac{1}{2}|y - G(u)|_{\mathsf{F}}^{2} + \frac{1}{2}|u|_{\Sigma}^{2};\\ \textit{Probability} \quad \mathbb{P}(u|y) \propto \exp(-\Phi(u)).\\\\ \text{Here } \langle \cdot, \cdot \rangle_{\mathcal{A}} = \langle \cdot, \mathcal{A}^{-1} \cdot \rangle \text{ and } |\cdot|_{\mathcal{A}} = |\mathcal{A}^{-\frac{1}{2}} \cdot |. \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Filtering Dynamical Systems Dynamics Model: $v_{n+1} = \Psi(v_n) + N(0, \Sigma), \quad n \in \mathbb{Z}^+$ Data Model: $y_{n+1} = Hv_{n+1} + N(0, \Gamma), \quad n \in \mathbb{Z}^+$ State Estimation: $v_n | \{y_\ell\}_{\ell=1}^n$.

Inverse Problem: Dynamical Formulation

 $\begin{array}{ll} \text{Dynamics Model:} & u_{n+1} = u_n, & n \in \{0, \cdots, M-1\} \\ \text{Dynamics Model:} & w_{n+1} = \mathsf{G}(u_n), & n \in \{0, \cdots, M-1\} \\ \text{Data Model:} & y_{n+1} = w_{n+1} + N(0, M\Gamma), & n \in \{0, \cdots, M-1\} \\ \text{Parameter Estimation:} & u_n | \{y_\ell = y\}_{\ell=1}^n \end{array}$

Discrete Time: Ensemble Kalman Inversion

Covariances

$$C_n^{ww} = \frac{1}{J} \sum_{j=1}^J (\mathsf{G}(\boldsymbol{u}_n^{(j)}) - \overline{w}_n) \otimes (\mathsf{G}(\boldsymbol{u}_n^{(j)}) - \overline{w}_n), \quad \overline{w}_n = \frac{1}{J} \sum_{j=1}^J \mathsf{G}(\boldsymbol{u}_n^{(j)}),$$
$$C_n^{uw} = \frac{1}{J} \sum_{j=1}^J (\boldsymbol{u}_n^{(j)} - \overline{u}_n) \otimes (\mathsf{G}(\boldsymbol{u}_n^{(j)}) - \overline{w}_n), \quad \overline{u}_n = \frac{1}{J} \sum_{j=1}^J \boldsymbol{u}_n^{(j)}.$$

Iteration $n \mapsto n+1$

$$\boldsymbol{u}_{n+1}^{(j)} = \boldsymbol{u}_{n}^{(j)} + C_{n}^{uw} (C_{n}^{ww} + M\Gamma)^{-1} (y - G(\boldsymbol{u}_{n}^{(j)}))$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Continuous Time: Ensemble Kalman Inversion

Means

$$ar{u}(t) = rac{1}{J}\sum_{j=1}^J u^{(j)}(t),$$
 $\overline{G}(t) = rac{1}{J}\sum_{j=1}^J G(u^{(j)}(t))$

Continuous Time Limit

$$\begin{aligned} u_n^{(j)} &\approx u^{(j)}(t)|_{t=n/M} \\ \dot{u}^{(j)} &= -\frac{1}{J} \sum_{k=1}^J \left\langle \mathsf{G}(\boldsymbol{u}^{(k)}) - \bar{\mathsf{G}}, \mathsf{G}(\boldsymbol{u}^{(j)}) - \boldsymbol{y} \right\rangle_{\Gamma} \left(\boldsymbol{u}^{(k)} - \bar{\boldsymbol{u}} \right) \end{aligned}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Mathematical Structure

Gradient Flow In Parameter Space

- Ensemble Filtering Continuous Time: Bergemann & Reich (2010a, 2010b, 2012) [4, 5, 6]
- Ensemble Filtering Continuous Time: Reich (2011) [38]
- Connection to Foais/Prodi: Titi and coworkers [21, 2]
- 3DVAR Filtering Continuous Time: Blömker, Law, S & Zygalakis (2013) [7]
- Ensemble Filtering Continuous Time: Kelly, Law & S (2015) [28]
- Ensemble Inversion Continuous Time: Schillings & S (2017) [42]
- Text: Reich & Cotter (2015) [39]
- Text: Law, S & Zygalakis (2015) [31]
- Ensemble Filtering Continuous Time: Lange & Stannat [30]
- Ensemble Square Root Filtering Continuous Time: Lange & Stannat [29]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Tikhonov Regularization: Chada, S & Tong [10]

Gradient Flow In Space Of Probability Measures

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Jordan, Kinderlehrer & Otto 1998 [26]
- Otto 2001 [34]
- Benamou & Brenier 2000 [3]
- Ambrosio, Gigli & Savare 2008 [1]
- Villani 2008 [45]
- Reich & Cotter 2013 [40]
- Garbuno-Inigo, Hoffmann, Li & Stuart 2020 [17]
- Garbuno-Inigo, Nüsken & Reich [18]

Ensemble Kalman Sampling (EKS)

Continuous Time Formulation: Put EKI in a heat bath

$$\dot{\boldsymbol{u}}^{(j)} = -\frac{1}{J} \sum_{k=1}^{J} \left\langle \mathsf{G}(\boldsymbol{u}^{(k)}) - \bar{\mathsf{G}}, \mathsf{G}(\boldsymbol{u}^{(j)}) - \boldsymbol{y} \right\rangle_{\Gamma} \left(\boldsymbol{u}^{(k)} - \bar{\boldsymbol{u}} \right)$$
$$- C(\boldsymbol{u}) \boldsymbol{\Sigma}^{-1} \boldsymbol{u}^{(j)} + \sqrt{2C(\boldsymbol{u})} \dot{\boldsymbol{W}}^{(j)}.$$

EKS Is Self-Preconditioned Langevin Equation (Linear G)

$$\begin{split} \dot{\boldsymbol{u}}^{(j)} &= -C(\boldsymbol{u})\nabla\Phi(\boldsymbol{u}^{(j)}) + \sqrt{2C(\boldsymbol{u})}\dot{\boldsymbol{W}}^{(j)}, \quad \Phi(\boldsymbol{u}) = \frac{1}{2}|\boldsymbol{y} - G(\boldsymbol{u})|_{\Gamma}^{2} + \frac{1}{2}|\boldsymbol{u}|_{\Sigma}^{2}, \\ \bar{\boldsymbol{u}} &= \frac{1}{J}\sum_{k=1}^{J}\boldsymbol{u}^{(k)}, \quad C(\boldsymbol{u}) = \frac{1}{J}\sum_{k=1}^{J}\left(\boldsymbol{u}^{(k)} - \bar{\boldsymbol{u}}\right)\otimes\left(\boldsymbol{u}^{(k)} - \bar{\boldsymbol{u}}\right). \end{split}$$

Self-Preconditioned Langevin Equation [17]

Mean Field Limit: Nonlinear Nonlocal Fokker-Planck Eq.

$$\begin{split} \dot{\boldsymbol{u}} &= -\mathcal{C}(\rho)\nabla\Phi(\boldsymbol{u}) + \sqrt{2\mathcal{C}(\rho)}\dot{\boldsymbol{W}},\\ \mathcal{C}(\rho) &= \int \left(\boldsymbol{u} - \bar{\boldsymbol{u}}\right) \otimes \left(\boldsymbol{u} - \bar{\boldsymbol{u}}\right)\rho(\boldsymbol{u}, t)d\boldsymbol{u}, \quad \bar{\boldsymbol{u}} = \int \boldsymbol{u}\rho(\boldsymbol{u}, t)d\boldsymbol{u}\\ \partial_t \rho &= \nabla \cdot \left(\rho \,\mathcal{C}(\rho) \,\nabla\Phi\right) + \mathcal{C}(\rho) : D^2\rho, \quad \rho(0) = \rho_0. \end{split}$$

Theorem [26],[17]

The nonlinear nonlocal Fokker-Planck equation may be written as

$$\partial_t \rho = \nabla \cdot \left(\rho \, \mathcal{C}(\rho) \nabla \frac{\delta \mathcal{E}}{\delta \rho} \right) \ , \ \mathcal{E}(\rho) = \int \left(\Phi + \ln \rho \right) \rho \, \mathrm{d} u.$$

▶ $\rho_{\infty}(u) := \exp(-\Phi(u))$ is a steady-state of the Fokker-Planck equation.

Theorem [17]

• G linear then
$$\|
ho(\cdot,t)-
ho_\infty\|_{L^1}\leq C\exp(-t)$$
 (independent of G)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Guiding Examples

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Learn dynamical systems from time-averaged data [12]

- Simplified GCM [35, 22]
- Unscented Kalman Filtering [27]
- Unscented Kalman Inversion [23]

Data From Dynamics

Time-Averaged Data

$$\begin{aligned} \frac{dv}{dt} &= F(v; \mathbf{u}), \quad v(0) = v_0, \\ y &= G_T(\mathbf{u}; v_0) = \frac{1}{T} \int_0^T \varphi(v(t)) dt. \end{aligned}$$

Central Limit Theorem

$$\begin{aligned} G_T(\boldsymbol{u};\boldsymbol{v}_0) &= G(\boldsymbol{u}) + \frac{1}{\sqrt{T}}N(0,\boldsymbol{\Sigma}), \\ \boldsymbol{y} &= G(\boldsymbol{u}) + \frac{1}{\sqrt{T}}N(0,\boldsymbol{\Sigma}). \end{aligned}$$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

Example 1 – 3D NS With Hydrostatic Assumption

Governing Dynamics

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) + \frac{\partial \rho \omega}{\partial z} = 0$$
$$\frac{D \mathbf{v}}{\partial t} + \Omega \mathbf{k} \times \mathbf{v} + \frac{\nabla p}{\rho} + \nabla \Phi = F$$
$$\frac{D T}{\partial t} - \frac{R T \omega}{C_{\rho} p} = \mathbf{Q}$$
$$\frac{\partial p}{\partial z} = -\rho g$$
$$\mathbf{p} = \rho R T$$

 ρ : fluid density; v, ω : horizontal and vertical velocities;

T: temperature; p: pressure, Φ : geopotential; k unit vertical.

D/Dt represents the derivative following a fluid parcel.

Q: radiation, to be learned.

Closure Model (Radiation Model)

$$Q = -k_T(\phi, \sigma)(T - T_{eq}(\phi, p))$$

$$k_T = k_a + (k_s - k_a) \max\left(0, \frac{\sigma - \sigma_b}{1 - \sigma_b}\right) \cos^4 \phi$$

$$T_{eq} = \max\left\{200K, [315K - \Delta T_y \sin^2 \phi - \Delta \theta_z \log(\frac{p}{p_0}) \cos^2 \phi](\frac{p}{p_0})^{\kappa}\right\}$$

$$k_a = 1/40 \text{ day}^{-1} \quad k_s = 1/4 \text{ day}^{-1} \quad \Delta T_y = 60 \text{ K} \quad \Delta \theta_z = 10 \text{ K}$$

Here σ is the vertical coordinate, ϕ is the latitude, $p_0 = 10^5 Pa$ is the reference sea-level pressure, and $\kappa = \frac{R}{C_p}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Zonally/Temporally Averaged Temperature

Convergence History

Rough Forward Models

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Affine invariance and ensemble samplers: Goodman and Weare [19]
- Other ensemble samplers: Leimkuhler, Matthews and Weare [32]
- Ensemble GP samplers: Reich and co-workers [33, 41]
- Multiscale analysis: Duncan, S & Wolfram [13]
- Related analysis for MCMC: Plechac and Simpson [37]

Problem Statement

Find *u* from *y* where $G : U \mapsto Y$, $\eta \sim N(0, \Gamma)$ is noise and

$$y = \mathsf{G}(\boldsymbol{u}) + \eta.$$

Main Approaches

$$\begin{array}{ll} \textit{Optimization} \quad \Phi(u) = \frac{1}{2} |y - G(u)|_{\Gamma}^{2} + \frac{1}{2} |u|_{\Sigma}^{2};\\ \textit{Probability} \quad \mathbb{P}(u|y) \propto \exp(-\Phi(u)).\\\\ \text{Here } \langle \cdot, \cdot \rangle_{A} = \langle \cdot, A^{-1} \cdot \rangle \text{ and } |\cdot|_{A} = |A^{-\frac{1}{2}} \cdot |. \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Sample Path

$$\dot{\boldsymbol{u}} = F(\boldsymbol{u}, \rho; \boldsymbol{G}) + \sqrt{2\mathcal{C}(\rho)}\dot{\boldsymbol{W}},$$

Fokker-Planck

$$\partial_t \rho = \nabla \cdot \left(\nabla \cdot (\mathcal{C}(\rho)\rho) - F(\mathbf{u}, \rho; \mathbf{G})\rho \right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Assumption

The forward model $G = G_{\epsilon}$ where

 $G_{\epsilon}(\boldsymbol{u}) = G_0(\boldsymbol{u}) + G_1(\boldsymbol{u}/\epsilon),$

 $\mathcal{G}_0 \in \mathcal{C}^1(\mathbb{R}^d, \mathbb{R}^K), \ \mathcal{G}_1 \in \mathcal{C}^1(\mathbb{T}^d, \mathbb{R}^K) \ \text{and} \ \int_{\mathbb{T}^d} \mathcal{G}_1(y) \ dy = 0.$

Multiscale Expansion Result

In limit $\epsilon o 0$ $ho({\color{black}u},t;G_\epsilon) o
ho({\color{black}u},t;G_0).$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

Self-Preconditioned Langevin Equation

Sample Path

$$\dot{\boldsymbol{u}} = -\mathcal{C}(
ho)
abla \Phi(\boldsymbol{u}) + \sqrt{2\mathcal{C}(
ho)} \dot{W}$$

Fokker-Planck

$$\partial_t \rho = \nabla \cdot \left(\mathcal{C}(\rho) \left(\nabla V \rho + \nabla \rho \right) \right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Self-Preconditioned Langevin Equation

Assumption

The forward model $G = G_{\epsilon}$ where $G_{\epsilon}(\boldsymbol{u}) = G_0(\boldsymbol{u}) + G_1(\boldsymbol{u}/\epsilon),$ $G_0 \in C^1(\mathbb{R}^d, \mathbb{R}^K), G_1 \in C^1(\mathbb{T}^d, \mathbb{R}^K) \text{ and } \int_{\mathbb{T}^d} G_1(y) \, dy = 0.$

Multiscale Expansion Result

In limit $\epsilon \to 0$ $\rho(\mathbf{u}, t; \Phi_{\epsilon}, C) \to \rho(\mathbf{u}, t; \Phi_{*}, D).$ Here $\Phi_{*} \neq \Phi_{0}$ and $C \succeq D$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example 2 – Linear + Periodic

Available Forward Model $G_{\epsilon}(\cdot)$

$$G_{\epsilon}(\boldsymbol{u}) = A\boldsymbol{u} + \left[\sin\left(\frac{2\pi\boldsymbol{u}_1}{\epsilon}\right), \sin\left(\frac{2\pi\boldsymbol{u}_2}{\epsilon}\right)\right]^{\top} \text{ with } A = \begin{pmatrix} -1 & 0\\ 0 & 2 \end{pmatrix}.$$

Desired Forward Model $G_0(\cdot)$

$$G_0(\boldsymbol{u}) = A \boldsymbol{u}$$
 with $A = \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Linear + Periodic - Ensemble Langevin sampler

Linear + Periodic - Ensemble Kalman sampler

メロト メロト メヨト メヨト

æ

Linear + Periodic - Misfit along iteration

Example 3 – Lorenz '63

Governing Dynamics

$$\dot{x} = 10 (y - x)$$
$$\dot{y} = r x - y - x z$$
$$\dot{z} = x y - b z$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 2-dimensional unknown: $\boldsymbol{u} = [\boldsymbol{r}, \boldsymbol{b}]^{\top}$
- Forward map G only available to us approximately via G_T .
- Noise η only available to us approximately via G_T .

Lorenz '63 - Misfit versus parameter

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Lorenz '63 - Misfit along iteration

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Refineable Ensemble Methods

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Random particles: Haber, Lucka and Ruthotto (2018) [20]

Multiscale particles: Pavliotis, S & Vaes (2021) [36]

Multiscale-EKS

Sample Path

$$\begin{split} \dot{u} &= -\frac{1}{J\sigma^2} \sum_{j=1}^{J} \langle G(u^{(j)}) - G(u), G(u) - y \rangle_{\Gamma} (u^{(j)} - u) \\ &- C(\Xi) \Sigma^{-1} u + \nu \sqrt{2C(\Xi)} \dot{w}, \\ u^{(j)} &= u + \sigma \xi^{(j)}, \qquad j = 1, \dots, J, \\ \dot{\xi}^{(j)} &= -\frac{1}{\delta^2} \xi^{(j)} + \sqrt{\frac{2}{\delta^2}} \dot{w}^{(j)}, \qquad \xi^{(j)}(0) \sim \mathcal{N}(0, I_d), \qquad j = 1, \dots, J, \end{split}$$

Covariance

$$C(\Xi) = \frac{1}{J} \sum_{j=1}^{J} (\xi^{(j)} \otimes \xi^{(j)}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Multiscale-EKS

Sample Path

$$\dot{\mathbf{u}}_t = -\nabla \Phi_R(\mathbf{u}_t) + \nu \sqrt{2} \, \dot{w}_t.$$

Define the exponent β is defined as follows:

$$\beta = \begin{cases} 1 & \text{if } G \in C^2(\mathbb{T}^d, \mathbb{R}^K), \\ 2 & \text{if } G \in C^3(\mathbb{T}^d, \mathbb{R}^K). \end{cases}$$

Theorem [36]

Let p > 1. Then

$$\mathbb{E}\left(\sup_{0\leq t\leq T}\|\boldsymbol{u}(t)-\boldsymbol{\mathfrak{u}}(t)\|^{p}\right)\leq C(\delta^{p}+\sigma^{\beta p}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example 3: Darcy Flow

Problem Setting

Forward: Find pressure $p(\cdot)$ from permeability $a(\cdot)$:

$$-\nabla \cdot (a(x)\nabla p(x)) = f(x), \quad x \in D$$

 $p(x) = 0, \qquad x \in \partial D$

Inverse: Find a from linear functionals {ℓ_j} of p.
 Prior on a: C = (-Δ + τ² I)^{-α}, Cφ_j = λ_jφ_j, log a ~ N(0,C): log a(x) = ∑_{j∈Z²+} u_j √λ_j φ_j(x), u_j ~ N(0,1) i.i.d..

• Likelihood $y|u \sim N(G(u), \gamma^2 I)$,

$$\mathsf{G}_j(\boldsymbol{u}) = \ell_j(\boldsymbol{p}(\cdot;\boldsymbol{u})), \quad j = 1, \cdots, 50.$$

Posterior u y.

Posterior Mean

True permeability (left); Posterior mode permeability (right)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Posterior Variability

Posterior in Karhunen-Loeve coefficients u

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Closing

Conclusions

1. Inverse problems of increasing importance.

- Often forward model is expensive.
- Often forward model adjoints impossible/expensive.
- Sometimes only rough forward model available.
- 2. Ensemble methods attractive in this setting.
 - Gradient flow structure: parameter space;
 - Gradient flow structure: probability space.
 - Multiscale analysis of rough forward models.
 - Multiscale approach to refineable approximations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

3. Many open mathematical questions.

References I

- L. Ambrosio, N. Gigli, and G. Savaré.
 Gradient flows: in metric spaces and in the space of probability measures.
 Springer Science & Business Media, 2008.
- [2] A. Azouani, E. Olson, and E. S. Titi.
 Continuous data assimilation using general interpolant observables. *Journal of Nonlinear Science*, 24(2):277–304, 2014.
- [3] J.-D. Benamou and Y. Brenier.

A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem.

Numerische Mathematik, 84(3):375-393, 2000.

[4] K. Bergemann and S. Reich.

A localization technique for ensemble Kalman filters.

Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 136(648):701–707, 2010.

References II

[5] K. Bergemann and S. Reich.

A mollified ensemble Kalman filter.

Quarterly Journal of the Royal Meteorological Society, 136(651):1636–1643, 2010.

[6] K. Bergemann and S. Reich.

An ensemble Kalman-Bucy filter for continuous data assimilation. *Meteorologische Zeitschrift*, 21(3):213–219, 2012.

- [7] D. Blömker, K. Law, A. M. Stuart, and K. C. Zygalakis. Accuracy and stability of the continuous-time 3DVAR filter for the navier–stokes equation. *Nonlinearity*, 26(8):2193, 2013.
- [8] D. Blömker, C. Schillings, and P. Wacker.

A strongly convergent numerical scheme from ensemble kalman inversion. SIAM Journal on Numerical Analysis, 56(4):2537–2562, 2018.

References III

[9] D. Blömker, C. Schillings, P. Wacker, and S. Weissmann. Well posedness and convergence analysis of the ensemble kalman inversion.

Inverse Problems, 35(8):085007, 2019.

[10] N. K. Chada, A. M. Stuart, and X. T. Tong.

Tikhonov regularization within ensemble Kalman inversion.

SIAM Journal on Numerical Analysis, 58(2):1263–1294, 2020.

[11] Y. Chen and D. S. Oliver.

Ensemble randomized maximum likelihood method as an iterative ensemble smoother.

Mathematical Geosciences, 44(1):1–26, 2012.

[12] E. Cleary, A. Garbuno-Inigo, S. Lan, T. Schneider, and A. M. Stuart. Calibrate, emulate, sample. arXiv preprint arXiv:2001.03689, 2020.

References IV

[13] A. B. Duncan, A. M. Stuart, and M.-T. Wolfram.

Ensemble inference methods for models with noisy and expensive likelihoods.

arXiv preprint arXiv:2104.03384, 2021.

[14] A. A. Emerick and A. C. Reynolds.

Ensemble smoother with multiple data assimilation.

Computers & Geosciences, 55:3-15, 2013.

[15] O. G. Ernst, B. Sprungk, and H.-J. Starkloff.

Analysis of the ensemble and polynomial chaos kalman filters in bayesian inverse problems.

SIAM/ASA Journal on Uncertainty Quantification, 3(1):823-851, 2015.

[16] G. Evensen.

Analysis of iterative ensemble smoothers for solving inverse problems.

Computational Geosciences, 22(3):885–908, 2018.

References V

[17] A. Garbuno-Inigo, F. Hoffmann, W. Li, and A. M. Stuart. Interacting Langevin diffusions: Gradient structure and ensemble Kalman sampler.

SIAM Journal on Applied Dynamical Systems, 19(1):412–441, 2020.

- [18] A. Garbuno-Inigo, N. Nüsken, and S. Reich. Affine invariant interacting Langevin dynamics for bayesian inference. SIAM Journal on Applied Dynamical Systems, 19(3):1633–1658, 2020.
- [19] J. Goodman and J. Weare.

Ensemble samplers with affine invariance.

Communications in applied mathematics and computational science, 5(1):65–80, 2010.

[20] E. Haber, F. Lucka, and L. Ruthotto.

Never look back-a modified enkf method and its application to the training of neural networks without back propagation.

arXiv preprint arXiv:1805.08034, 2018.

References VI

[21] K. Hayden, E. Olson, and E. S. Titi.
 Discrete data assimilation in the lorenz and 2d navier-stokes equations.
 Physica D: Nonlinear Phenomena, 240(18):1416–1425, 2011.

[22] I. M. Held and M. J. Suarez.

A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models.

Bulletin of the American Meteorological society, 75(10):1825–1830, 1994.

[23] D. Z. Huang, T. Schneider, and A. M. Stuart.

Unscented Kalman inversion.

arXiv preprint arXiv:2102.01580, 2021.

[24] M. A. Iglesias.

A regularizing iterative ensemble kalman method for pde-constrained inverse problems.

Inverse Problems, 32(2):025002, 2016.

References VII

[25] M. A. Iglesias, K. J. Law, and A. M. Stuart. Ensemble Kalman methods for inverse problems. *Inverse Problems*, 29(4):045001, 2013.

[26] R. Jordan, D. Kinderlehrer, and F. Otto.
 The variational formulation of the fokker-planck equation.
 SIAM journal on mathematical analysis, 29(1):1–17, 1998.

[27] S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte.

A new approach for filtering nonlinear systems.

In *Proceedings of 1995 American Control Conference-ACC'95*, volume 3, pages 1628–1632. IEEE, 1995.

[28] D. T. Kelly, K. J. Law, and A. M. Stuart.

Well-posedness and accuracy of the ensemble Kalman filter in discrete and continuous time.

Nonlinearity, 27(10):2579, 2014.

References VIII

[29] T. Lange and W. Stannat.

On the continuous time limit of ensemble square root filters. arXiv preprint arXiv:1910.12493, 2019.

[30] T. Lange and W. Stannat.

On the continuous time limit of the ensemble Kalman filter. arXiv preprint arXiv:1901.05204, 2019.

[31] K. Law, A. Stuart, and K. Zygalakis. Data assimilation.

Cham, Switzerland: Springer, 2015.

 B. Leimkuhler, C. Matthews, and J. Weare.
 Ensemble preconditioning for markov chain monte carlo simulation. Statistics and Computing, 28(2):277–290, 2018.

[33] D. Maoutsa, S. Reich, and M. Opper. Interacting particle solutions of Fokker-Planck equations through gradient-log-density estimation.

Entropy, 22(8), 2020.

References IX

[34] F. Otto.

The geometry of dissipative evolution equations: the porous medium equation.

2001.

[35] P. A. O'Gorman and T. Schneider.

The hydrological cycle over a wide range of climates simulated with an idealized gcm.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Journal of Climate, 21(15):3815–3832, 2008.

[36] G. Pavliotis, A. Stuart, and U. Vaes.

Derivative-free bayesian inversion using multiscale dynamics. *arXiv preprint arXiv:2102.00540*, 2021.

[37] P. Plecháč and G. Simpson.

Sampling from rough energy landscapes.

arXiv preprint arXiv:1903.09998, 2019.

References X

[38] S. Reich.

A dynamical systems framework for intermittent data assimilation. BIT Numerical Mathematics, 51(1):235–249, 2011.

[39] S. Reich and C. Cotter.

Probabilistic forecasting and Bayesian data assimilation. Cambridge University Press, 2015.

[40] S. Reich and C. J. Cotter.

Ensemble filter techniques for intermittent data assimilation.

Large Scale Inverse Problems. Computational Methods and Applications in the Earth Sciences, 13:91–134, 2013.

[41] S. Reich and S. Weissmann.

Fokker-planck particle systems for bayesian inference: Computational approaches.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

arXiv preprint arXiv:1911.10832, 2019.

References XI

[42] C. Schillings and A. M. Stuart.

Analysis of the ensemble Kalman filter for inverse problems. SIAM Journal on Numerical Analysis, 55(3):1264–1290, 2017.

- [43] T. Schneider, A. M. Stuart, and J.-L. Wu. Imposing sparsity within ensemble kalman inversion. arXiv preprint arXiv:2007.06175, 2020.
- [44] T. Schneider, A. M. Stuart, and J.-L. Wu. Learning stochastic closures using ensemble kalman inversion. arXiv preprint arXiv:2004.08376, 2020.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

[45] C. Villani.

Optimal transport: old and new, volume 338.

Springer Science & Business Media, 2008.