SAYAS NUMERICS SEMINAR     Register to attend talk
April 6, 2021 at 3:30pm (Eastern Time)

Operator Inference: Bridging model reduction and scientific machine learning

Karen Willcox
Director, Oden Institute for Computational Engineering and Sciences
University of Texas at Austin

Model reduction methods have grown from the computational science community, with a focus on reducing high-dimensional models that arise from physics-based modeling, whereas machine learning has grown from the computer science community, with a focus on creating expressive models from black-box data streams. Yet recent years have seen an increased blending of the two perspectives and a recognition of the associated opportunities.

This talk presents our work in operator inference, where we learn effective reduced-order operators directly from data. The physical governing equations define the form of the model we should seek to learn. Thus, rather than learn a generic approximation with weak enforcement of the physics, we learn low-dimensional operators whose structure is defined by the physics. This perspective provides new opportunities to learn from data through the lens of physics-based models and contributes to the foundations of Scientific Machine Learning, yielding a new class of flexible data-driven methods that support high-consequence decision-making under uncertainty for physical systems.